

Independence War

I-War

Mission Script Programming

Reference Guide

V0.1 (Alpha) � SAVEDATE \@ "d-MMM-yy" * MERGEFORMAT �27-Oct-98�

Written By Rich Aidley�And�Stephen Robertson

Copyright © 1998 Particle Systems Ltd.

�Contents

� TOC \o "1-3" �Introduction	� PAGEREF _Toc431029537 \h ��3�

IWar Customisation overview	� PAGEREF _Toc431029538 \h ��4�

Deslabbing	� PAGEREF _Toc431029539 \h ��4�

Command Line options	� PAGEREF _Toc431029540 \h ��4�

Editing Scripts	� PAGEREF _Toc431029541 \h ��5�

The Geographical Database	� PAGEREF _Toc431029542 \h ��6�

Overview of stock scripts	� PAGEREF _Toc431029543 \h ��6�

Script Language Reference	� PAGEREF _Toc431029544 \h ��8�

Syntax	� PAGEREF _Toc431029545 \h ��8�

Symbols	� PAGEREF _Toc431029546 \h ��10�

Commands	� PAGEREF _Toc431029547 \h ��15�

Conditionals	� PAGEREF _Toc431029548 \h ��17�

Object Construction	� PAGEREF _Toc431029549 \h ��21�

Object Placing	� PAGEREF _Toc431029550 \h ��24�

Orders	� PAGEREF _Toc431029551 \h ��25�

Symbol Manipulation	� PAGEREF _Toc431029552 \h ��27�

Object Property Changes	� PAGEREF _Toc431029553 \h ��28�

Setting Player Values	� PAGEREF _Toc431029554 \h ��31�

Setting Game Values	� PAGEREF _Toc431029555 \h ��32�

Visual Effects	� PAGEREF _Toc431029556 \h ��33�

Misc. Actions	� PAGEREF _Toc431029557 \h ��34�

Mission Commands	� PAGEREF _Toc431029558 \h ��35�

Dialogue	� PAGEREF _Toc431029559 \h ��36�

AI Quick Overview	� PAGEREF _Toc431029560 \h ��41�

Orders	� PAGEREF _Toc431029561 \h ��41�

Debugging	� PAGEREF _Toc431029562 \h ��49�

The Cheat Mode	� PAGEREF _Toc431029563 \h ��49�

History Screen keys	� PAGEREF _Toc431029564 \h ��49�

In-Game Keys	� PAGEREF _Toc431029565 \h ��49�

Debugging Keys	� PAGEREF _Toc431029566 \h ��50�

The Debug Command	� PAGEREF _Toc431029567 \h ��50�

Simple Tutorial	� PAGEREF _Toc431029568 \h ��51�

Editing the Script	� PAGEREF _Toc431029569 \h ��51�

Lesson 1: Changing the start point	� PAGEREF _Toc431029570 \h ��52�

Lesson 2: Adding another ship	� PAGEREF _Toc431029571 \h ��52�

Lesson 3: Giving the tug some orders	� PAGEREF _Toc431029572 \h ��54�

Lesson 4: Checking for a mission win	� PAGEREF _Toc431029573 \h ��54�

Appendix A – Solar System Table	� PAGEREF _Toc431029574 \h ��56�

��Introduction

This document is a reference guide to editing, creating, and programming missions scripts for the game I-War / Independence War. While it aims to give you an understanding of the script programming language, it is not a tutorial in programming missions. A basic knowledge of programming in a common computer language (e.g. BASIC, PASCAL, C, etc.) is assumed.

It’s recommended that you study the game’s pre-defined mission scripts and / or modify the existing scripts to see how the language is used before attempting to write your own custom missions.

It’s also recommended that you are familiar with playing the game, and read the game manuals before attempting any script programming.

The document is presented in five main sections:

Customisation: An outline of how to unpack the IWar files and which ones to pay attention to.

The Script Language:	Details of commands, symbols and conditionals.

AI: An outline of the Artificial Intelligence and how to control it.

Debugging

Simple Tutorial

Note that this document applies to I-War / Independence War version 1.2 (3dfx upgrade & American release) or later.

For the purposes of this document we shall refer to the game as IWar to avoid confusion.

PLEASE NOTE:

This is an ALPHA version of the document. Some information may be missing, incomplete or incorrect.

If you have found a mistake in this document, or have a suggestion, submission, or want to tell us about a mission you’ve created then email scripts@particle-systems.com

We will read all email sent to this address, but can’t promise to reply.

Particle Systems will endeavour to correct any mistakes in this script programming document, but can’t promise to provide any technical support regarding the Script language, script programming or delslabber, or answer any queries regarding the script programming document or deslabber, as the deslabber and its accompanying documentation are not officially supported by Particle Systems or Infogrames Entertainment.

The Independence War Message board is visited frequently by Particle Systems, and is a good forum to swap information, experience, missions and mission ideas with other users.

You can find it at: http://www.independencewar.com/f-messages.htm

Please do not send any queries or information regarding mission scripts or script programming to our support, info, or webmaster email addresses! Please do not contact Infogrames with any queries regarding the script language, as they will not be able to help you.

�IWar Customisation overview

It is possible to either extend or customise IWar by modifying the data files that the game uses during execution. The game, Iwar.exe, acts an interpreter for a script language used to run both the front end and individual missions. Under normal circumstances the game runs packaged (slabbed) versions of these files to prevent tampering and save space. However there are command line options that can be used to force the game to load individual files.

Deslabbing

After installing the game you should three files called

scripts.slb, shapes.slb and text.slb

in the psg/resource/ directory of your IWar install. If you open scripts.slb in a text editor, you will see that it’s a concatenation of a large number of files. Each of these is written in the IWar script language.

In order to change them, you will have to unpack these files so that you can work on them individually. The deslabber program “Deslab.exe” which should accompany this documentation, can do this for you. Put the deslabber in the psg/resource/ directory and open up a DOS window.

Type:

DESLAB scripts.slb

DESLAB shapes.slb

DESLAB text.slb

If all goes well, each execution of deslabber should report a certain number of files successfully deslabbed. The most common reason for a failure to deslab a file is running out of space on your hard drive.

Scripts.slb contains all the scripts used in the game and some of the ones used in the development of it. Inside the scripts directory you should find the following directories;

Missions	The missions and briefings from the game.

Ships 		Set-up scripts for all the ships that appear in the game.

Init		Containing the keyboard set up and the stock scripts that cover random encounters.

Text.slb opens up all the text resources (the in-game written dialogue). If you’re interested, shapes.slb creates directories containing the real time models from the game in Lightwave readable format.

Command Line options

To use command line options with IWar, make a shortcut to the executable IWar,exe in the IWar install directory. (If you’ve installed the 3Dfx Upgrade you’ll need to create a shortcut to the Game.exe instead)

If you right-click on the shortcut, you will get a properties panel. You can add command line options to the ‘Target’ box under the ‘Shortcut’ tag of the properties panel. The first part of this line should be the location of the executable. Leave this as it is. After it, add any commands you wish and follow these with the path to the script you want to run. If you don’t specify a script, the game will run from the front end. You can add the command line options in any order, but the script path name must be at the end of the command line.

Common command line options include:

-w�Run in windowed mode. When running an unstable prototype script this is useful because it will allow you to shut down IWar if it crashes without having to reboot your machine. Usually...

Note: This option does not work in 3Dfx mode, however mission scripts should work exactly the same in 3Dfx or windowed software mode, so the option is useful for debugging missions even for the 3Dfx version.

��-debugscript�Allows error and warning messages to be output to the user. This also enables the DEBUG script command that you can use to see where in your script you are. Debug messages are also saved in the debug.txt file in the IWar install directory.��-powers�Activates the cheat controls. Note that this only works when the game is not being run from the front end; Otherwise you will have to enter the appropriate password in the history view to activate the cheats.

See the cheats and debugging reference later in this document for details on the cheat mode and debugging functions.��-b –16

�Selects 3Dfx mode. Note that these two options must be used together.��-noslab�Instructs the game to run without using the .slb slab files. If you are testing your own scripts, this is essential.��-arcade	�Will run the game in arcade mode.��-800x600�Run the game in hi-res 800x600 mode. Currently this only works on Voodoo2 based cards.��-English�Run the game using English language.��-French�Run the game using French language.��-German�Run the game using German language.��-nolodfix�The level of detail of the target of the camera is usually fixed at the highest setting regardless of detail. This makes it difficult to test multiple levels of detail when making new objects, so this command allows normal LOD changing on the camera target.��-nologos�Skips loading of the logo animations – speeds up loading when testing your missions.��-lagrange�Reactivate the Select LaGrange button so that the player can choose their own jump destination.��

				

Editing Scripts

Any text editor (e.g. Notepad) can be used to modify the scripts. We used Microsoft Developer Studio, mainly so that we could add bookmarks.

All mission scripts as well as some others have the extension .scr . This is normally associated with screen savers, so double clicking on a script file to edit it will normally give an error.

You can change the file association of the scripts file to a text editor such as Notepad, if you wish. To do this right click on a script file while holding down a shift key. Click Open With… and select the program you wish to edit the script. Click on the ‘Always use this program…’ check box and click OK. Next time you double click on a script file it’ll open using your preferred text editor.

The Geographical Database

The celestial elements of the IWar universe are described in two files. The first, stars.bin, describes all the stars and their positions. This is what you ‘see’ in the global space (GSV) view. It is recommended that you do not change this.

The second file, excelrichsys.csv, is an excel readable database of the planets encountered in those star systems that the player can LDS to. Most of the columns are self explanatory, but the ones you should pay most attention to are the parent and type columns.

The parent column gives the key number of the mass that an object is in orbit around. The exception to this is LaGrange points. Their parent is the object in whom’s orbit they lie.

The Key values indicate which star system the planets belong to. Key numbers 0-99 belong to system 1 (Sol), numbers 100 to 199 to system two (Epsilon Eridani) and so on. They key number of a planet must appear in the database before any of the objects that orbit it.

Note that star bases do not appear in the database. These are dealt with separately in stock.scr, the stock scripts file.(See the stock script documentation for further details.)

Overview of stock scripts

IWar contains a set of stock scripts that are used to set up conditions that will be encountered often. These are contained within stock.scr, and form a set of subroutines. There are two main types.

Location Scripts

These set up well known bases in particular star systems, along with any other special script information required there. There is one stock routine for each star system, although most of them are empty.

Each location subroutine has the label STARSYSTEM_N, where N is the starsystem number. Because they are subroutines, they are terminated with RETURNs.

Location subroutines really come into their own when the player is given a greater free hand in the game (I.e. the select LaGrange button has been re-activated in test0_x.gui (There’s a command line option to do this – see Command Line Options)

It is possible to set up recurring sub-routines inside one of these stock scripts, as with the chaos alien homeworld (STARSYSTEM_26 }, but care should be taken that these check to see if the player is still in the same system. This is not done in the case of the Zeta 2 Reticuli code simply because in that case, it is impossible to escape.

It would be possible just using the stock scripts to restructure the IWar game into a much more free-form game.

Starship scripts

You will have noticed that numbers of extra craft turn up in the vicinity of starbases, simulating background traffic. The bulk of such ships are civilian cargo vessels. If you follow them they can be seen to travel to distant LaGrange points.

Whenever one of these ‘extra’ ships is called for, IWar executes one of the stock starship scripts. For technical reasons, these are executed outside of the normal script ‘phase’ and for this reason the starship stock scripts are terminated by WAITs rather than RETURNs.

The starships are organised into six types:

DRONE�Small size short ranged repair vessels. Typically only present at stations.��FIGHTER�Fighter craft like the C-Fighter and the Indie fighter.��ARMED�Medium scale military vessels. Patcoms, Corvettes, that kind of thing.��CARGO�Any small to medium sized civilian vessels��FREIGHTER �Larger civilian vessels. Only the Train/Freighter craft currently falls into this category.��MOTHERSHIP�A ship large enough to spawn small craft of its own. Although only a cruiser is in the current implementation you might want to add carriers yourself.��

In most circumstances the allegiance of the new craft will be altered to match the allegiance of the mothership that spawned it, but you should make the default allegiance NEUTRAL when setting up your script. The criteria for changing allegiance depends on both the type of ship and its emitter.

If the craft is emitted by a LaGrange point or planet or other non-starship its allegiance will be random. Failing this, the allegiance of DRONE, FIGHTER, ARMED and MOTHERSHIP class vessels will be copied from the ship producing them. CARGO craft and FREIGHTER craft retain their allegiance (usually neutral) from the stock script.

Placing

New ships will be placed at nearby LaGrange points if one is close by or behind the ship that emits them. This generalisation can have some odd effects - for example, it is perfectly possible for a fighter to come out of the L5 jump point by salt lake in spite of the fact that fighters have no capsule drives.

�

Script Language Reference

The IWar script language is made of three different types of operators. These are symbols, commands, and conditionals.

Commands do the work of the language. They all perform operations on either the game state or the script state. They are the only element of the language that can exist alone, as commands are used to utilise the other two. Symbols are the operands of the language. The Commands often require data to work with and that data is supplied in the form of the symbols. The third type, the conditionals, are used to evaluate a course of action or check for a condition.

Commands and Conditionals are similar in that they both take symbols as arguments. However, whereas compound commands cannot be formed (compound commands are combinations of commands that can be substituted in any place that a single command could go in some languages) compound Conditionals can be formed. Any Command that takes a Conditional as one of its operands will also take a string of conditionals in that same place.

Syntax

It’s important that you get the syntax of the commands right, as the script language is not very robust, and unpredictable crashes or other problems may occur if scripts are written incorrectly.

In general a space or tab character always follows a command e.g.

WAIT_TIME	500

Arguments or expressions following a command are separated by commas, though spaces or tabs can be used in addition to commas to format and space the command e.g.

WAIT_UNTIL	DIALOGUE_OVER, T150

Comments are designated with a ‘;’. You can place comments at the beginning or end of a line. All characters after a ‘;’ up to the end of the line will be ignored, e.g.

; This is a comment

WAIT_TIME	 500	; This is another comment

BUG: there is a bug in IW which means that you can’t use a script keyword such as PLAYER in a comment. This is case sensitive so “player” would be OK.

You can also comment out a whole section of script by using /* and *\ e.g.:

/*	WAIT_TIME	500

	WAIT_UNTIL	DIALOGUE_OVER, T150

This whole section is commented out */

Labels (For branch and jump commands) are designated with a : suffix, e.g.

BRA	Label:

	Code to be skipped…

Label:

	Code to be run.

Note: Labels are case sensitive, and unpredictable results may happen if you get the case wrong!

In this document required parameters are designated with < >, e.g. :

WAIT_TIME < number X >

Optional parameters are shown with [], e.g.:

DOCKED < sceneitem VESSEL1>,[< sceneitem VESSEL2>]

�Symbols

Many of the script language commands take one or more arguments. These are referred to as ‘symbols’. Symbols come in a wide variety of types, some of which are interchangeable. In broad terms the symbols can be divided into two groups; variable and fixed symbols.

Variable symbols represent instances of games objects. They are best thought of as pointers to pieces of data, and both their values (which game world object they represent) and the objects themselves can change throughout the course of the mission. It is important to note that sometimes a command will operate on the object a variable type symbol represents, and sometimes it will operate on the symbol itself. (For example, DESTROY will destroy the ship that SYMBOL1 contains, whereas CREATE_SHIP will make a new ship and adjust SYMBOL1 to point to it.)

Fixed symbols are symbols whose data cannot change. This includes numbers, strings and enumerated types. Because they do not change, their data content is not subject to indirection in the same way as for variable symbols.

The next two sections discuss the specific types within both categories. A couple of things, such as a conditional_list, are not technically symbols but we’re including them because they’re parameter types for commands.

Variable Symbols

Symbol

A command accepting an argument of type symbol will take any symbol at all.

Sceneitem

A symbol used to represent a physical in-game object such as an asteroid, a ship , a LaGrange point and so on.

Waypoint

A specific type of sceneitem. A waypoint symbol is only used to represent waypoints (or a LaGrange point at a push.)

Variable

A symbol used to carry a numeric value.

Resource

A loaded datatype. Resource symbols usually represent text files, models and sounds.

3dp

A symbol used to represent a 3d primitive attached to a specific sceneitem. Only stations and other large articulated objects have more than one 3dp associated with their base sceneitem.

Fixed Symbols

Number

A number is a number, oddly enough, and can be either integer or real. Some commands that take number types will take variable types in substitution if wished.

Numbers are often used to pass co-ordinates, and this seems as good a place as any to mention that the Y co-ordinate in the IWar universe is reversed in comparison to lightwave co-ordinates. (This effect is because lightwave has a left hand co-ordinate system and the BRender graphics API we use is a right hand system.)

String

A string of characters enclosed within double quotes.

Boolean

A boolean symbol has is one of two values;

TRUE	or

FALSE

Toggle

A toggle symbol is one of the values;

ON	or

OFF

Sense_flags

Most functions that take sense flags can take sets of them separated by commas to build up a complete

mask.

SN_DEBRIS�Base type senses.	��SN_STARSHIP	���SN_MISSILE���SN_PROJECTILE���SN_DUMMY�Dummy objects are internal markers, best left alone.	��SN_ALIEN

SN_ALLIANCE

SN_BLACKSHIPS

SN_COMMONWEALTH

SN_EXERCISE

SN_INDEPENDENT

SN_NEUTRAL �Allegiance senses … these shouldn’t be combined except with SN_FACTION_ONE and SN_FACTION_TWO

Allegiance senses dictate what a craft appears to be to others…

it’s actual allegiance (almost always the same) is stored separately	 ��SN_FACTION_ONE

SN_FACTION_TWO�The two faction values have a direct effect on the allegiance.

�����SN_OFFENSIVE���SN_TRANSPORT���SN_LIGHT���SN_CARGO���SN_CARRIER���SN_SERVICE���SN_CIVILLIAN���SN_WAYPOINT	���SN_PRIVATE_WAYPOINT�An invisible way point.��SN_LAGRANGE���SN_PLANET������SN_DAMAGED�Behavioural/Status flags��SN_CRIPPLED,���SN_RUNNING_AWAY���SN_LEPER�Set on the player if he’s killed his mates.��

Allegiance

ALLEG_NEUTRAL���ALLEG_NAVY���ALLEG_INDIE���ALLEG_BLACK���ALLEG_ALIEN�Note that there is no separate allegiance for Nairnama and Chaos ships.��ALLEG_EXERCISE�Target drones and combat training partners.��ALLEG_ALLIANCE���

obj_enum

NEW�Set objective to green, as if it has just been introduced.��FAIL	�Set objective to red. It’s been failed.��DONE	�Objective has been passed. We will get score for it.��

Weapon_type

LIGHTBEAMCANN�Beam cannon variations.	��SLOWBEAMCANN���BEAMCANN���LONGBEAMCANN���HEAVYBEAMCANN���GATTLEBEAMCANN���PBCXL������MISSLNCH�Normal seeker missile��LDS_SEEK�LDS Inhibit missile��PROBE�Dockable probe��ANTIMATTER�Antimatter explosion – a big boom!��CHAOS�Chaos restraining beam��PROXMINE�Proximity Mine��RECON�Attachable probe, as in mission 24��REM_MISSILE�Remote Guided missile��FLARE�Decoy flare��DISRUPTOR�Disruptor weapon. Disables target AI for small duration. Blue venting sparkles appear over target.��

Weapon_arc

Weapon arc symbols are used in combinations of three to define a weapons facing, vertical arc and horizontal arc.

ARC_FWD		�Weapon facing.��ARC_FWD_LFT���ARC_LFT���ARC_AFT_LFT���ARC_AFT���ARC_AFT_RHT���ARC_RHT���ARC_FWD_RHT������ARC_60�Weapon horizontal arc.��ARC_WIDE�140 degrees��ARC_TIGHT�6 degrees.��ARC_30������ARC_UPPER�Upper 90 deg.��ARC_LOWER�Upper 90 deg.��ARC_FULL�Approx. 170 deg.��ARC_MEDIUM�30 deg.��ARC_NORM�60 deg.��

Control_type

Control type is used in the long version of setting up craft. If you use CREATE_SHIP, you should not have to worry about it. The control routine of a ship decides what it does. This is different to the Sim routine, which operates what actually happens when it tries to do it.

CONTROL_NULL�No control routine.��CONTROL_MAIN�Player control routine.��CONTROL_TEST�Obsolete��CONTROL_AI�Standard AI control. Runs the whole order shebang.��CONTROL_AIFREE�Only has one order, does no collision avoidance or spin reduction.��CONTROL_FREE�Drifting object. Converts to CONTROL_MAIN if it becomes the player.��

Ship_type

CORVETTE	�Dreadnaught class ship, same as player’s.��FREIGHTER���COMMAND�Command section��HCORVETTE���TRANSPORT���CRUISER���PATCOM���CFIGHTER�Commonwealth Fighter��SFIGHTER�Indie Fighter��TUG���MISSILE���MINE���DRONE���STATION���DESTROYER���CARRIER���COMMRELAY���GUNBASE���RING�Training ring / Navigation Buoy��

dock_type

DOCKTYPE_UNIVERSAL�Accept any docking point type.��DOCKTYPE_COMMAND�Accept only command module docking points.��

dock_flag

DOCK_NORMAL�Normal docking rules.��DOCK_OVERRIDE�Craft will override the control logic of whatever it docks to.��DOCK_DISAPPEAR�Craft will disappear altogether if it uses this docking point.��DOCK_DISAPPEAR_INVIS�Same as DISAPPEAR.��

System Variables

These are variables built into the script system that will give you various information that you might otherwise not have access to. Some of them also give you the opportunity to adjust internal variables.

However most of the variables are not intended to be changed and I’ve marked them as read only. This is only advisory and it is possible to change them anyway, although the results may be unpredictable.

LASTSHIP�Read only�The last starship to have been created or substantially modified by the script system.��LAST3DP�Read only�The last 3dp created by CREATE_SHIP��LASTRES�Read only�The last resource loaded.��LASTWAYPT�Read only�Latest waypoint created by the script system.��SCORE�Read only�The current score. Only updated by looking at the debriefing screen.��TIMER�Read only�The value of the global timer (the one used by TIMER_SET and TIMER_OUT). However, this reading is in seconds rather than centi-seconds.��XHITS�Read only�Total of hits scored on the player by exercise vessels.��NWAYPTS�Read only�The numeric value created by COUNT_WAYPTS and subsequently decremented whenever the player reaches a waypoint. (Used in training missions)��MISSTIME�Read only�Time since the mission began. Measured in centi-seconds.��STOPCLOCK�Read / Write�A flag that prevents the mission clock from incrementing when set to non zero. It is ok to modify this value yourself.��TGTTIME

�Read / Write�Set the target time for a mission by setting this value in centi seconds. If the mission ends with MISSTIME inside this value then the player will score a time bonus.��TIMESCORE�Read / Write�The time bonus scored by the player is equal to TIMESCORE times the amount of seconds under TGTTIME that the player gets. This is then capped to a value of 500.��DREADBODY�Read only�A reference to the main section of the player ship after command module separation.��DREADHEAD�Read only�A reference to the command module of the player ship after separation.��MISSNUMBER�Read only�The internal mission number.��BESTTIME�Read only�The previous best time in this mission.��NULL_DATA�Read only�Empty symbol used for comparison tests.��

	

�Commands

Control Structures

Calls

The Call series of functions execute subroutines of code. The subroutines return to the previous point in the script after a RETURN is encountered. There are eight Call types.

CALL_WHEN < label LABEL>,< condition_list CONDITION>

This works like an interrupt. The condition list CONDITION is tested at frequent intervals by the software engine (intervals of less than a second, the precise interval will depend on the number of call-whens currently active). Once the condition list is valid, execution passes to the subroutine indicated by LABEL. During subroutine execution testing of other call-whens is suppressed.

CALL_WHEN_NOT < label LABEL>,< condition_list CONDITION>

The same as with CALL_WHEN, but activated when the conditional is FALSE.

CALL_ONCE_WHEN < label LABEL>,< condition_list CONDITION>

CALL_ONCE_WHEN will only call its subroutine once, when its’ conditions are first satisfied. After that, it becomes inactive and won’t trigger again. Very useful for one-off events that may occur at any point during the mission.

CALL_ONCE_WHEN_NOT < label LABEL>,< condition_list CONDITION>

As above, but activates when the condition is not true.

CALL < label LABEL >

CALL immediately calls the subroutine indicated by LABEL.

CALL_ONCE < label LABEL >

CALL_ONCE immediately calls the subroutine indicated by LABEL. However, CALL_ONCE will delete itself (to be replace with an internal NOP). This means that if the point of execution passes through the same code again, the subroutine will not be re-executed.

CALL_IF < label LABEL >,<condition_list CONDITIONS >

CALL_IF calls the subroutine indicated by LABEL if the conditions CONDITIONS are true. Unlike CALL_WHEN, this test is only made whenever the point of execution reads the CALL_IF.

CALL_ONCE_IF < label LABEL >

CALL_ONCE_IF calls the subroutine indicated by LABEL if the conditions CONDITIONS are true. If CALL_ONCE_IF causes a call to a subroutine it will delete itself, so that it’s subroutine will only be called once.

Branches (Gotos)

BRA < label LABEL >

BRA, short for Branch, will cause an immediate jump to the point in the script indicated by LABEL. This is not a subroutine, and RETURN will not cause the point of execution to return to just after the BRA as it would with a CALL.

BRA_IF < label LABEL >,< condition_list CONDITIONS >

BRA_IF will cause a branch to LABEL it the condition list CONDITIONS is satisfied.

BRA_IF_NOT < label LABEL >,< condition_list CONDITIONS >

BRA_IF_NOT will cause a branch to LABEL it the condition list CONDITIONS is not satisfied.

BEQ < label LABEL >,< symbol SYMBOL1>,<symbol SYMBOL2>

BEQ will jump to the code indicated by LABEL if the symbols SYMBOL1 and SYMBOL2 both represent the same data. The symbols can be variables, numbers or sceneitems.

BNE< label LABEL >,< symbol SYMBOL1>,<symbol SYMBOL2>

BNE will jump to the code indicated by LABEL if the symbols SYMBOL1 and SYMBOL2 represent the different data to each other. The symbols can be variables, numbers or sceneitems.

DECBNE < variable VAR >,< label LABEL>

DECBNE will decrement the variable VAR by one. If the result is not equal to zero, DECBNE will cause a branch to the code point LABEL.

DECBEQ < variable VAR >,< label LABEL>

DECBEQ will decrement the variable VAR by one. If the result is exactly zero, DECBEQ will cause a branch to the code point LABEL.

Waits

WAIT_UNTIL <conditional COND >, <label LABEL>

Waits until the required conditional COND is true, before continuing the script.

It’s best to have a ‘get out clause’ in the conditional, so that the mission doesn’t get stuck waiting for one single event to happen. E.g.:

WAIT_UNTIL DESTROYED,Indie1

 This command may never continue if Indie1 is not destroyed in a mission, but:

WAIT_UNTIL DESTROYED,Indie1,OR,FARFROM,Dreadnt,Indie1,1000000

This will continue if Indie1 is destroyed, or if the Dreadnaught is far enough away from Indie1.

WAIT_TIME < Number TIME >

Waits TIME centiseconds before continuing the script.

�Conditionals

Conditionals are used as arguments to commands. Unlike commands which can only be used singly, conditionals can be combined to evaluate complex situations. The order of precedence is from left to right, with each successive conditional separated by commas. E.g.:

WAIT_UNTIL	DIALOGUE_OVER, T100, OR, DESTROYED, Indie1

AND <conditional>

Returns TRUE if the previous conditionals and following conditionals evaluate to TRUE.

OR < conditional >

Returns TRUE if either the previous conditionals or the following conditionals evaluate to TRUE.

NOT <conditional>

Returns TRUE if the following conditional or set of conditionals evaluates to FALSE. Note that strings of conditionals evaluate left-to-right.

DESTROYED <ScItem>

Returns true if the ship has been destroyed or an invalid symbol is passed.

ATTACKED <ScItem1>,[<ScItem2>]

If ScItem1 does not exist, this returns true on the assumption the item was destroyed.

If ScItem1 does exist the LastHitBy flag is checked and TRUE returned if it is valid. If the optional argument ScItem2 is passed then TRUE will only be returned if ScItem2 was the attacking vessel.

NOSHIPS <Allegiance>,[< Number N>]

Returns true if there are no ships left of the given allegiance. If the number is given, then the condition is only true if there are less than N ships left.

Note that stations are not included in either count.

NONETOBRINGIN <sceneitem LOOPVAR>,<Number X>,[<sense_flag>]…

The important part of this conditional is it’s side-effect. It brings ships from system X into the current star system. The ships are selected on the basis of the sense_flags given at the end of the argument list. If a ship is brought through, the variable LOOPVAR is changed to point to it so that it can be given new orders.

The conditional returns true if a vessel has been brought through, and FALSE otherwise.

NEARTO <sceneitem OBJECT1 >,<sceneitem OBJECT2 >,< number X >

Returns true if the distance between OBJECT1 and OBJECT2 is less than X.

If either sceneitem is non-existent or in another star system no reading will be taken.

The distance measure excludes the radii of the objects.

HASFIRED <sceneitem VESSEL>

Checks to see if the vessel has fired since the last HASFIRED reading.

VALID_SCN <sceneitem VESSEL>

Returns TRUE if VESSEL represents a valid, non-dead sceneitem.

SCN_SENSE <sceneitem VESSEL >,[< sense_flag FLAGS >]

True is VESSEL has the sense flag list given set. All the flags given must be set.

FARFROM <sceneitem VESSEL1>,< sceneitem VESSEL2 >,< number X >

TRUE is VESSEL1 and VESSEL2 are more than X centimetres apart, or if either ship is dead.

ALT_LOWER <sceneitem VESSEL>,<number ALTITUDE>

TRUE is the VESSEL is lower than ALTITUDE kilometres from the nearest planet.

FALSE if the VESSEL is dead or non-existent.

VELMATCH < sceneitem VESSEL1>,< sceneitem VESSEL2 >,< number LIMIT >

Tests to see if the velocities of VESSEL1 and VESSEL2 are close together, within LIMIT. LIMIT is a vector length distance measured in metres per second. However, the velocities will also be rejected if they are in different directions and that difference is greater than LIMIT/200 radians. I think.

INSYSTEM <number SYSTEM >,[<sceneitem VESSEL>]

INSYSTEM tests to see if the player is in star system number SYSTEM. If VESSEL is specified, the test will be done on VESSEL instead of the player.

DOCKED < sceneitem VESSEL1>,[< sceneitem VESSEL2>]

if only one argument is given, DOCKED will check to see if VESSEL1 is docked to anything. If both arguments are given, DOCKED will only be TRUE if VESSEL1 is specifically docked to VESSEL2

UNDOCKED < sceneitem VESSEL >

TRUE if VESSEL is not docked to anything, or if the ship is dead.

PLAYER_LINKED

TRUE if the player isn’t in the command module.

DAMAGE_LT <sceneitem VESSEL >,< number X >

Is TRUE is VESSEL has less than X percent hull damage.

DAMAGE_GT <sceneitem VESSEL >,< number X >

Is TRUE is VESSEL has taken more than X percent hull damage.

IMPACTS_GT	<number X>

True if the number of planetary impacts is greater than X. See ‘Asteroids Deluxe’

AUTOPILOT <number X>

Returns false if the player is not in any autopilot mode.

If X is less than zero, AUTOPILOT will return TRUE is the player is in any AUTOPILOT mode.

Otherwise AUTOPILOT will only return TRUE if the current autopilot is the one indicated by X.

WING_ORDER <number X>

Tests to see if the current wingman order is the one indexed by X.

CONT_FILTER <number X >

CONT_FILTER returns TRUE if the contacts filter is in the mode indexed by X

PROMPTS_ON

TRUE if we are in prompts mode.

IS_TARGET < sceneitem VESSEL1 >,< sceneitem VESSEL2 >

TRUE if VESSEL1 is VESSEL2’s weapon target

WAYPTCOUNT_EQ < number X >

TRUE if the remaining waypoint count (internal var WaypointsLeft) is equal to X. See training missions for examples.

WAYPT_VISITED < sceneitem WAYPOINT >

TRUE if WAYPOINT has been visited. (a diagonal line should appears through visited waypoints)

SYS_OUT <sceneitem VESSEL>,< number X >

Check to see if system number X is out on VESSEL. The system number refers to the system flags of the vessel and not to the system objects of the dreadnaught.

EMIT_GT <sceneitem VESSEL>,< number X>

TRUE if the heat emissions exceed the value X. Used for missions in which the player has to remain stealthy or face hot radium death!

LOOKING_AT <sceneitem VESSEL1>,<sceneitem VESSEL2>,[< toggle P>]

Generally speaking tests to see if VESSEL1 is looking at VESSEL2, but there are several sub-clauses;

If either ship is in LDS, LOOKING_AT returns FALSE.

If the ships are outside ‘reasonable’ distance of each other, LOOKING_AT returns false. Reasonable distance varies with object radius, but is kept to the range 1.2k to 25k. This distance check is omitted if the optional boolean P is OFF.

The ships must then have a relative velocity of less than 150 m/s.

Finally, the z axis of VESSEL1 (it’s line of sight) must be within 10 degrees of the vector between VESSEL1 and VESSEL2.

TOWED_BY <sceneitem VESSEL1>,<sceneitem VESSEL2>

TRUE if VESSEL1 is towing VESSEL2.

CONTACT < sceneitem VESSEL >

TRUE if VESSEL is in the Players’ sensor range and registered as a contact.

TIMER_OUT

TRUE when the global timer (set with TIMER_SET) runs out.

TIMER_LT <number X>

TRUE if the number of centi-seconds remaining on the global timer is less than X.

SHIP_CLOCK <sceneitem VESSEL>

TRUE if the vessels local clock has expired. SHIP_CLOCK has the side effect of re-setting the ship’s local clock to its ClockReset value.

DIALOGUE_OVER [<resource DIALOGUE>]

When there are no arguments, DIALOGUE_OVER is only TRUE if is no dialogue being displayed or waiting to be displayed.

When the argument DIALOGUE is present, DIALOGUE_OVER only checks the dialogue indicated and returns TRUE if it is not active.

SHIPCOUNT_LT <shipclass CLASS>,<allegiance ALLEG>,<number X>

TRUE if the number of ships of class CLASS and allegiance ALLEG is less than X.

SENSECOUNT_LT <number X>,[<sense_flag FLAG>]…

True if the number of objects satisfying the sensor profile FLAG is less than X.

GROUPCOUNT_LT < number GROUP >,< number X >

Counts the number of ships of Group GROUP in the current star system. TRUE if this count is less than X.

SHIP_TYPE	< sceneitem VESSEL >,< ship type TYPE >

TRUE if VESSEL is of type TYPE

IN_GROUP < sceneitem VESSEL >,< number X >

Test to see if starship VESSEL belongs to group X. Useful when you have a loop where you only want to do things to a specific formation of ships.

EQUAL < symbol SYMBOL1 >,< symbol SYMBOL2 >

Tests for the equivalence of the data represented by SYMBOL1 and SYMBOL2. This could include;

Testing two variables to see if they hold the same value.

Testing two sceneitem variables to see if they point to the same ship.

Testing a variable against a numeric value.

GT < symbol SYMBOL1 > < symbol SYMBOL2 >

Tests to see if SYMBOL1 is greater than SYMBOL2. This can be used with any combination of symbols that IF_EQUAL can deal with, although some of them, such as testing two sceneitems against each other , will make little logical sense.

IN_LDS < sceneitem VESSEL >

TRUE if the starship VESSEL is in LDS mode.

PROBED < scenitem VESSEL >

TRUE if the sceneitem VESSEL has a recon probe attached.

OBJV < objv_enum ENUM > < number X >

Tests to see if objective X is in the state indicated by ENUM. ENUM will be one of DONE,FAIL or NEW. (NEW is an objective in its ‘raw’ state before it has been either succeeded or failed.)

REMLINK <sceneitem VESSEL >

Tests to see if the player has activated a remote link to object VESSEL.

WEAPON_EMPTY < sceneitem VESSEL >,< number X>

True if weapon number X of object VESSEL is empty.

HARDWARE

TRUE if the game is running in 3D accelerated mode.

ARCADE_ON

TRUE if the game is running in arcade mode.

�Object Construction

CREATE_SHIP <sceneitem VESSEL>, <resource MODEL>, <ship_type TYPE>, <allegiance ALLEG>, <number X>, <number Y>, <number Z>, [<number YAW>, <number PITCH>, <number ROLL>]

Create a starship and redirect VESSEL to the newly created starship. Equivalent to using the commands CREATE and SHIP separately. The parameters should be self explanatory.

CREATE <sceneitem VESSEL>,<3dp TDP>,<resource MODEL>

Creates a sceneitem. The first 3D primitive of the model (the 3dp) is given the model MODEL and loaded into TDP for later reference. VESSEL is altered to reference the new sceneitem.

ADDCHILD <sceneitem OBJECT>,<3dp TDP>,<resource MODEL>,<number X>,<number Y>,<number Z>

Adds a subsidiary 3d primitive to a primary one. The variable TDP is taken from a CREATE command. A new 3d primitive is created with the model MODEL and the relative offset from TDP of X,Y and Z. See the construction of saltlake in stock.scr for example usage.

ADDMOTOR <sceneitem OBJECT>,<3dp TDP>,<motort_type MOTOR>

Adds a motor function to the 3d primitive TDP.

CONTROL <sceneitem VESSEL>,<control_type CONTROL

Associates the control logic CONTROL with the object VESSEL.

ATTACH_SND <sceneitem VESSEL>,<resource SOUND>

Attaches the sound SOUND to the object VESSEL. The sound is looped, and becomes audible as the player approaches the target ship.

LAGRANGE <sceneitem LAGRANGE>,<string NAME>,>,<number X>,<number Y>,<number Z>

Creates an artificial LaGrange point and points the symbol LAGRANGE to it. The LaGrange point is given the name NAME, and placed at the co-ordinates X,Y and Z. As with WAYPT, other commands such as PLACE_BETWEEN can later be used to re-position the LaGrange point. (for example, between a station and a world.)

Note that although the LaGrange point can be used as an exit from the system, it will not show up on the starchart, and cannot be used as a destination from other star systems. The only exceptions are stock ships, which will appear to come in through it.

ASTEROID < sceneitem ASTEROID>,<number SIZE>,<number X>,<number Y>,<number Z>

Creates an asteroid at position X,Y,Z and points the symbol ASTEROID to the newly created object.

The size of the asteroid is governed by SIZE. 0 is a small asteroid, 1 a medium asteroid and 2 a large asteroid. Any asteroid created this way will be the splitting variety seen in ‘Asteroids Deluxe’, and can be split 3 times before it disappears completely.

SYSTEM <string SYSTEM_NAME>,<string LOCATION>

Repositions the player in the star system SYSTEM_NAME at the LaGrange point LOCATION. Either the SYSTEM_NAME or LOCATION can be given as numbers that index the appropriate objects rather than the names themselves. This is recommended in order to avoid localisation issues.

FIND_PLANET<sceneitem PLANET>,<string IDENTIFIER>,[<number DESTINATION>]

Finds the stellar object (Planet, LaGrange point or star) in the local system identified by IDENTIFIER. The sceneitem that represents this object is loaded into PLANET. (typically for use with positioning information for other objects).

If the optional variable DESTINATION is included and the ‘planet’ is a LaGrange point, then the last ship destination value is set to DESTINATION. This means that if the player uses the alien device to track whatever last went through, the system given will be the one indexed by DESTINATION. This will be overridden if something really does go through said point.

NAME_INC < number N >,< sceneitem VESSEL >,[<string NAME>]…

The object VESSEL is given a new name. N is an index into the list of NAME variables, starting with zero, and indicates which one will be the objects new name. Every time this command is used the number is incremented (this is self-modifying code), so it makes sense to start with 0. NAME_INC is used to give ships created in a loop different names. If N exceeds the number of names given, the last name will be used.

ENGINE < sceneitem VESSEL >,< number MAIN_THRUST >,< number SUB_THRUST >,< number LDSACCEL >,< number LDS_MAX >,< number ROLL_RATE >,< number PITCH_RATE >,< number YAW_RATE >,< number MAX_VELOCITY >

Sets the engine parameters of the starship VESSEL. Most are self-explanatory, except for LDS ACCEL, which must be in the range 105-150, and MAX_VELOCITY which is not used. (It’s vestigial from an earlier version of the physics engine.)

SHINFO < sceneitem VESSEL >,<number ARMOUR >,<number STRUCTURE>,[<number MASS>]

Sets the Armour and structural integrity values of the ship VESSEL. Optionally, the mass can also be set at this point. Typical Armour values are 20-30 for a rock, 40-50 for a civilian ship, 45-55 for an Indie vessel and as much 60 for a newer military model. For reference, a corvette has about 1500 structure points. (Structure points define how much punishment a vessel can take before it explodes completely, although it may be blown up from within before reaching this limit if certain chain reactions take hold as a result of systems damage.)

LIGHT< sceneitem VESSEL >, <number X>,<number Y>,<number Z>, <number SIZE>,<number COLOUR>,<number ON>,<number OFF>,<number STAGGER>,[<flare_type FLARE>]…

**This information to be included in a later version **

LIGHT_S < etc >

The same as LIGHT but only executed when the game is running in software mode.

LIGHT_H < etc >

The same as LIGHT but only executed when the game is running in hardware mode.

RANK < sceneitem VESSEL >,< number RANK >

Gives a numerical ranking value to a ship. The higher the value, the higher-ranking the ship is.

Rank no longer has any effect on the game.

SKILL	< sceneitem VESSEL >,<number SKILL>

Sets the skill level of VESSEL to SKILL. The average setting is 50, and the permissible range is 1 to 100. The higher the better. More skilled pilots will take decisions more frequently and perform tighter manoeuvres, not to mention having more accurate gun crews. Lower skill crews are the reverse. SKILL can be used to tweak the game balance instead of adding or removing ships, or it may be used to improve an individual opponent in line with their reputation.

WEAPON < sceneitem VESSEL >,< weapon_type WEAPON>,<weapon_arc ARC1>,<weapon_arc ARC2>,<weapon_arc ARC3>,<number X>,<number Y>,<number Z>

Adds a weapon of type WEAPON onto the starship VESSEL. The weapon has the fire arc given by combining the fire-arc flags ARC1,ARC2 and ARC3. The position of the weapon relative the centre of the ship is given by X,Y and Z. This is sometimes referred to as the ‘hardpoint’.

LDA < sceneitem VESSEL >,< number NLDAS >,[<number LDA_STRENGTH>]…

Sets the number of LDA deflectors on the object VESSEL. NLDAS gives the number of LDAs to be set, and cannot be greater than four. The number of LDA_STRENGTH variables must be the same as NLDAS. The strength of the LDAs is given as the percentage chance of them stopping an incoming blast. The LDAs go on alternately the top and the bottom of the ship.

WAYPT <sceneitem WAYPOINT>,<string NAME>,<number X>,<number Y>,<number Z>,[<Boolean VISIBLE>],[< Boolean LINE>]

WAYPT creates a waypoint and loads is into the symbol WAYPOINT. The waypoint will have the name NAME and be positioned at the co-ordinates given in X,Y and Z.

If the optional boolean VISIBLE is set to OFF the waypoint will not come up on the HUD, and is just for use of the AI. (Can be used to provide invisible parking-points for non-player starships.)

If the Optional boolean LINE is set to ON, a line will be drawn between this waypoint and the one before it until one or the other waypoint is visited. For an example, see the ‘rings’ training mission where this feature is used to plot the path the player needs to follow.

MOTHERSHIP< sceneitem VESSEL >,[< emit_types EMIT>]…

Declares object VESSEL to be a mothership. It will emit the types of ship given by the optional sequence of EMIT variables. Used to create traffic around starbases and to add fighter wings to some cruisers.

PLAYER <sceneitem PLAYER>

Makes the sceneitem given in PLAYER into the player. This command also initialises a lot of important script stuff as a side effect.

PASSIVE <sceneitem OBJECT>

In order to speed up collision processing, objects that don’t move around much can be labelled as passive collider. A passive collider cannot hit other passive colliders, so makes a good choice for stations. PASSIVE will make the object referenced by OBJECT into a passive collider.

PERMANENT <sceneitem OBJECT>,<boolean BOOL>

Sets the permanence flag of the object OBJECT to the value of BOOL. A permanent object will remain in the database if the player leaves the system, whereas an impermanent object will be deleted. Most starships (except, as always, stock ships) are permanent by default so this command is used rarely.

SIM_PRIORITY <sceneitem OBJECT>

sceneitems are stored in a linked list and get evaluated in the order that they are listed. SIM_PRIORITY moves the sceneitem referenced by OBJECT to the front of the list so that it’s simulation will be done first each frame.

GROUP_LEADER <sceneitem VESSEL>

The starship VESSEL becomes the leader of the current group. The ships’ behaviour will change accordingly, as it will become reckless. This means it will not run away from danger or certain death. Leaders should be inspirational, after all.

WEPSYSLINK < string SYSNAME >

Finds the player ship system with the name SYSNAME and connects to the last weapon created. Whilst there is nothing to stop you from wiring enemy weapons up to player systems, it wouldn’t make much sense….

�Object Placing

Note: Most of the scripts in the game use relative coordinates, rather than absolute. In general placing scene items using the PLACE_BETWEEN command is more flexible and easier to work out than specifying an exact set of co-ordinates for each item.

PLACE_BETWEEN <sceneitem VESSEL1>,<sceneitem OBJECT1>,<sceneitem OBJECT2>,<number DISTANCE>

Places the object VESSEL1 between the objects OBJECT1 and OBJECT2, at a distance of DISTANCE from OBJECT1.

ABSOLUTE

Switch positioning mode into absolute co-ordinates.

RELATIVE <sceneitem OBJECT>

Providing that OBJECT references a valid sceneitem, that sceneitem becomes the point of origin for the positioning system. Note that the axis of the co-ordinate system are still aligned with those of global space.

PLACE <sceneitem OBJECT>,<number X>,<number Y>,<number Z>

Places the object at the co-ordinates X,Y and Z.

ORIENT <sceneitem VESSEL1>,<sceneitem VESSEL2>

Rotates object VESSEL1 until it is axis align with those of object VESSEL2

SPAWN < sceneitem VESSEL1 >,< sceneitem VESSEL2 >,< number X >,< number Y >,< number Z >,[< boolean BOOL>]

Used to place VESSEL1 relative to VESSEL2. The co-ordinates X,Y and Z are converted into VESSEL2’s co-ordinate space. SPAWN is usually used to emulate the emission of smaller craft from specific points on motherships, but it can be used to set up formations of ships. Unless the value of the optional boolean BOOL is OFF, the spawned object (VESSEL1) will have five seconds freedom-of-collision from it’s parent, allowing it to get clear of bays, etc.

PLACE_INC < number N >,< sceneitem VESSEL >,[<number X>,<number Y>,<number Z>]…

Works in a similar way to NAME_INC, see above. Sequentially places the ship VESSEL at the co-ordinates given in the successive triples X,Y and Z. N will be incremented each time the instruction executes so as to pass through the list.

ATTACH_WAYPT <waypoint WAYPOINT>,<sceneitem TARGET>

Attaches the waypoint WAYPOINT to the object TARGET. Oddly enough, this is better achieved by using NAV_TARGET to set the waypoint’s navigation target to TARGET. This will have the same effect, but work better with the AI.

�Orders

Orders are commands used to tell ships and other items in the game what to do. The computer AI will attempt to perform the order using abilities of the ordered vessel. Of course this means you could order a mega freighter to dogfight with a fighter, with poor results. The secret is to structure your orders according to the abilities and objectives of the ships you’re ordering.

ORDER <number ORDERNUM>,< number PRIOR_ORDER >,< sceneitem VESSEL >,<string ORDERNAME>,< number UNUSED1>,< number UNUSED2>,< number MULTIPLIER>,< symbol PARAM1>,<symbol PARAM2>

Sets up an order for the starship VESSEL. ORDERNUM gives the number of the order to be set - ships have 10 order slots, numbered 0-9. Slot 0 should not be used, as this contains the ships default self-preservation order and the craft may act unnaturally if it is removed.

If the PRIOR_ORDER variable is set then the order that it indexes must be completed before the new order being set up will be considered.

ORDERNAME is a string saying what the order is to do. For more details, see the Orders appendix.

The two unused variables, UNUSED1 and UNUSED2, should be set to 0.

Every order has an evaluator associated with it that is used to decide which order to follow at any given time. The evaluator uses the parameters PARAM1 and PARAM2 to come up with an urgency number between 1 and 100, which is then multiplied by the MULTIPLIER. If the result brings it out ahead of the current active order by 10 percent or more, the ship will switch tasks.

ORDER_PARAMS <number ORDER_INDEX>,< sceneitem VESSEL>,< symbol ALPHA>,< symbol BETA>, < symbol GAMMA>

Some orders require one or more parameters to be carried out successfully, and can’t make-do with the defaults set up by ORDER. ORDER_PARAMS allows you to set these. The effect of the parameters ALPHA,BETA and GAMMA vary from order to order, so check in the orders appendix.

PLAYER_ORDER < string ORDERNAME >,< boolean LDS >

Sets the player autopilot to the order given in ORDERNAME. If the boolean LDS is true, the player will switch into LDS mode, otherwise he will switch out of it.

ASSERT_ORDER <number ORDER_INDEX>,< sceneitem VESSEL>

Makes the order indexed by ORDER_INDEX into the current order for VESSEL. However, this won’t effect its evaluator function and it may still switch back to another order very quickly.

CANCEL_ORDER <number ORDER_INDEX>,< sceneitem VESSEL>

Cancels the order ORDER_INDEX of the ship VESSEL. In some situations it is advantages to cancel the self-preservation order in slot 0, in order to make a vessel extra-reckless.

TARGET <sceneitem VESSEL1>,<sceneitem VESSEL2>

Sets the weapon target of VESSEL1 to point to VESSEL2.

NAVTARGET <sceneitem VESSEL1>,<sceneitem OBJECT>

Sets the navigation target of VESSEL1 to point to OBJECT.

IGNORE_NAV <sceneitem VESSEL>

Formations of ships are often passed new targets by their leader in order to co-ordinate them. IGNORE_NAV prevents VESSEL being passed as a navigation target by such ships for a duration of five seconds.

IGNORE_WEP <sceneitem VESSEL>

Formations of ships are often passed new targets by their leader in order to co-ordinate them. IGNORE_WEP prevents VESSEL being passed as a weapon target by such ships for a duration of five seconds.

�Symbol Manipulation

SET < variable VAR >, < number N >

Set the value of variable VAR to N

	

SET_INC < number INSET ,< variable VAR >,[< number N >]…

Use the index INSET into the set of numbers N to set the value of VAR. With each subsequent execution the value of INSET increases by one. See PLACE_INC and NAME_INC

ADD	< variable VAR >,< number/variable N>

Add the value N to the variable VAR and store it in VAR.

SUB	< variable VAR >,< number/variable N>

Subtract the value N from the variable VAR and store the result in VAR.

RANDS < variable VAR >,< number RANGE >

Replace the contents of VAR with a number in the range +/- RANGE.

FIRST_SCN < sceneitem LOOP >,[< sense_flag FLAGS>]…

Accumulates sense flags in FLAGS, then sets the value of LOOP to the first sceneitem that contains all the flags given.

NEXT_SCN < sceneitem LOOP >,[< sense_flag FLAGS>]…

Accumulates sense flags in FLAGS, then sets the value of LOOP to the next sceneitem after LOOPs previous value that contains all the flags given. NEXT_SCN will return an invalid sceneitem if it reaches the end of the list without finding further candidates.

COPY_SCN <sceneitem SYMBOL1>,<sceneitem SYMBOL2>

Copies the value of SYMBOL1 into SYMBOL2, where both symbols are sceneitems. In practice, this means that SYMBOL2 will refer to the same sceneitem that SYMBOL1 does.

COPY_SYM <symbol SYMBOL1>,<symbol SYMBOL2>

More general than COPY_SCN, COPY_SYM copies the value of SYMBOL1 into SYMBOL2. This can be done for any symbol type, but the result will vary. For most types - sceneitems, models etc SYMBOL1 will gain a pointer to the data SYMBOL2 points to. For a few types, such as numeric variables, SYMBOL1 will get a copy of SYMBOL2s data.

GET_LEADER <number X>,<sceneitem VESSEL>

Finds the leader of group X and loads it into the symbol VESSEL. If there is no leader then VESSEL will retain its previous value.

�Object Property Changes

NOCONTACT <sceneitem VESSEL>,<boolean BOOL>

If BOOL is true then it is not possible for the object VESSEL to be picked up on the players’ contact list. If the BOOL is false then the VESSEL may be picked up as a contact.

SET_MODEL <sceneitem VESSEL>,<resource MODEL>

Changes the primary model of the object VESSEL to the resource MODEL The new lod-def models and collision details are calculated.

INDESTRUCT <sceneitem VESSEL>,<boolean BOOL>

Turns indestructibly for the given vessel on or off.

DSHIELD <sceneitem VESSEL>.<boolean BOOL>

Turns a ‘bouncy shield’ on or off. This shield harms other vessels and is an ideal ramming device.

DISRUPT <sceneitem VESSEL >,< number TIME>

Simulates the effect of a military disrupter hit, as in the Morgan mission. The object VESSEL will be disrupted for TIME centi-seconds. It TIME is given as less than or equal to zero, the disruption will last indefinitely. In this case a second DISRUPT command, with a short (say, 10 centi-second) fuse can be used to un-disrupt the ship.

ADD_VITAL < sceneitem VESSEL >

Adds the object VESSEL to the list of vital ships. If the ship gets destroyed, the mission will abort, stating that a vital ship has been destroyed.

REMOVE_VITAL < sceneitem VESSEL >

Removes the object VESSEL from the vital ships list. It can now be destroyed without endangering the mission.

NEW_ALLEG < sceneitem VESSEL>,[<allegiance ALLEG>]…

Deletes the object VESSEL’s old allegiance settings and replaces them with the list given in ALLEG.

ADD_SENSE < sceneitem VESSEL >,[< sense_flag FLAGS >]..

Sets the given sense flags of object VESSEL

CLR_SENSE < sceneitem VESSEL >,[< sense_flag FLAGS >]..

Clears the given sense flags of object VESSEL

FTLSOURCE < sceneitem VESSEL >

The object VESSEL becomes a source of an FTL signal, the strength of which can be measured by the ships’ engineer. Used for the hotter-colder game in the mission ‘Rebus’

DOCK_MODEL < sceneitem VESSEL >,< number DOCKPORT>,[< model MODEL>]

Sets up the dockport indexed by DOCKPORT such that is the ship docks by this point, its model will be replaced by MODEL. This is used for docking command modules onto larger ships. If the optional parameter MODEL is not given, the dockpoint reverts to normal.

WEAPON_LOAD < sceneitem VESSEL >,<number WEAPON>,< number LOAD>

Sets the number of rounds or magazines left for the weapon indexed by WEAPON. For beam weapons LOAD will be the actual number of shots remaining, while for projectile weapons (missiles, probes, etc) LOAD will be the number of re-loads remaining. Note that seeker missiles rack up in 3s.

SELECT_WEAPON < sceneitem VESSEL >,< number WEAPON>

Forces the starship VESSEL to select the weapon indexed by WEAPON. Useful when you want the player to start off with a particular unusual weapon selected (for example, the PBC XL in ‘Power Extreme’.)

WEPLOADOUT <number SHOTS>,<number MAGAZINES>

Sets the current load and the number of magazines of the last weapon to be created with WEAPON. If the weapon is a beam class weapon, then WEPLOADOUT has no effect.

DOCK_READY < sceneitem VESSEL >,< number DOCKPT >,< dock_flag FLAG >

Makes the docking point indexed by DOCKPT ready for use. DOCK_READY also sets the docking flag to the value given in FLAG. For everyday use, DOCK_NORMAL is recommended.

DOCK_UNREADY < sceneitem VESSEL >,< number DOCKPT>

Unsets the dock point and clears any flags that are set other than DOCK_NORMAL

MONOLINK

Don’t bloody ask. It was only used in one of the ‘lost missions’ anyway.

SET_SHIP_CLOCK < sceneitem VESSEL >,< number START >,< number RESET >

Every ship has a clock associated in it, timed in centi-seconds. SET_SHIP_CLOCK sets the starting time of this clock to START, and the reset time to RESET. Once the timer has expired it will remain at zero until read with the SHIP_CLOCK conditional, which will reset it to the reset value.

SET_SHIP_CLOCK may cause a crash if an invalid sceneitem is passed.

NO_UNDOCK <sceneitem VESSEL>,<boolean BOOL>

If BOOL is ON, then the starship VESSEL is unable to undock. This can be useful to simulate damage or when the player is required to wait for permission before leaving a base. It is also used whenever someone is boarding or leaving the ship, so that their dialogue may be completed without the player sauntering off mid-speech.

REMOTE_OK <sceneitem VESSEL>,<bolean BOOL>

turns the ability of the player to make a remote link to a given ship (VESSEL) on or off. The default state is not to be able to open a remote link.

SHIP_SYSKILL <sceneitem VESSEL>,< number SYSTEM>,[<number INTEGRITY>]

For non-player ships, this command damages a given system. The exact effect depends on the combination of SYSTEM and INTEGRITY.

If SYSTEM is a valid index and INTEGRITY is either positive or not supplied, the system indexed will be destroyed outright (It may recover later.)

if SYSTEM is a valid index and INTEGRITY is -1, the system will be restored to proper operation.

If SYSTEM is not a valid index, the damage will instead be applied to the structural integrity. The structural integrity of the ship will, as a percentage, be set to INTEGRITY.

UNLEADER <sceneitem VESSEL >

If the spaceship VESSEL is a group leader, it stops being the group leader. A new leader will be chosen., usually the next ship in the same group.

DO_WHEN <sceneitem VESSEL>,<event_type EVENT>,<effect_type EFFECT>

Instructs the machine to wait for a particular effect connected to the object VESSEL. When the event EVENT occurs, it will have the effect EFFECT. This system was never expanded upon, being almost completely superseded by the use of CALL_WHEN and CALL_ONCE_WHEN which offer greater flexibility.

Although there is a set of event_types and effect_types this document will not describe them. The only pair you need to know are AT_DISMANTLE and AF_ANTIMATTER_EXP (respectively an event_type and an effect_type,) which can be used to trigger an antimatter explosion if a particular vessel is destroyed.

PLAY_WHEN <sceneitem VESSEL>,<event_type EVENT>,<resource MOVIE>

PLAY_WHEN will play the smacker MOVIE when the event EVENT happens to the object VESSEL.

�Setting Player Values

LOCK_AUTOPILOT <boolean BOOL>

If BOOL is ON, the player is left unable to abort his current autopilot, if he has one. A second call to LOCK_AUTOPILOT with the value OFF will remedy the situation.

SET_TARG_LP <number X>,<string DESTINATION>

SET_TARG_LP is used to set the capsule space destination of the player. X is the system number o f the destination, and DESTINATION is the name of the LaGrange point to be used as the exit.

ALIENDEV [< boolean BOOL>]

Enables the Alien device. The alien device is the spider-like thing that allows the player to track other ships through hyperspace. If the optional boolean BOOL is OFF, ALIENDEV will have no effect. (Note that it just doesn’t enable it, ALIENDEV cannot at time of writing be used to disable the alien device.)

WEPRAPID [<boolean BOOL>]

turns the capability of the player to use rapid fire mode on or off, according to the value of BOOL. If no BOOL is given, the behaviour is undefined.

PLAYER_DAMAGE <string SYSTEM_NAME>,<number EFFICIENCY>,[<boolean DESTROYED>]

Damages a player system. The system corresponding to SYSTEM_NAME is set to a percentage of functionality given by EFFICIENCY. If the optional variable DESTROYED is ON, then the system will be destroyed outright and rendered irreparable to the repair teams.

�Setting Game Values

SET_MAX_EXTRAS < number X >

Sets the maximum number of stock-ships that can be present to X. Stock ships are the ones that are procedurally generated by motherships. Because SET_MAX_EXTRAS will not delete excess ships if the number is lowered, it may cause errors if it is used to reduce the maximum number of stock ships.

LOCATION <string SYSTEM>,[<string LOCATION>]…

Declares, for the purpose of the star-viewer, a system that will be used during the course of the mission. SYSTEM is a either the name of the system or the number of the system within double quotes. The LOCATION list is the LaGrange points within the system that will be used. If it is enabled, clicking SELECT LAGRANGE on the system will toggle through this list.

REPAIRS <boolean BOOL>

Turns the ability of the player’s engineers to repair his ship on or off. In rare cases the story requires that these teams be temporarily out of action.

NO_LDS <sceneitem BOOL>

If BOOL is ON, then no one in the system can use LDS. Obviously if BOOL is OFF, then everyone’s’ LDS drives are re-enabled.

SHIP_SCORE < ship_type TYPE >, < number SCORE >

Change the score given for killing a particular type of ship from its default to the value SCORE.

ALLEG_SCORE < allegiance ALLEG>,< number SCORE_MODIFIER >

Change the score modifier for a particular allegiance. This is multiplied by the ship type score whenever a kill is made.

COUNT_WAYPTS <number X>

Sets the expected count of waypoints to X. This number will be decrimented whenever the player reaches a waypoint

NEW_GROUP

Increments the internal Group variable. This is used to segregate ships - all ships issued after the command will belong to the new group. Group numbers created by NEW_GROUP will always be in excess of 1000, to avoid conflict with any specific numeric groups the player may add later.

GROUP <number X>,[<sceneitem VESSEL>]

If no VESSEL is supplied, the internal group variable will be set to X.

If VESSEL is supplied, then the starship it refers to changes its group allegiance to X, and the global group variable remains unchanged. It is not recommended to change a ships’ group number to one belonging to a group on the otherside; the ship will behave irrationally, caught in the conflict between its duty to its allegiance and its duty to its group.

FIXED_AST <boolean BOOL>

Turns asteroid drifting on and off. Most asteroids tumble slowly, but passing a BOOL value of OFF will stop them doing this - useful to prevent bases in asteroid belts from being pummelled. Or you could just give them anti-asteroid weapons, as with the UNO in mission 24.

�Visual Effects

DIRECTOR <sceneitem VESSEL1 >,<sceneitem VESSEL2>,<camera CAMERA>,<number DURATION>

Puts the game into director mode, using the camera type requested.

STATIC <number TIME>

Fill the ‘computer’ displays with static for a fixed time. Not recommended.

DINK <number TIME >,<number MAGNITUDE >,[<number FLASH>]

Jitters the screen for TIME centiseconds. The power of the jitter is set by MAGNITUDE. If wished, the screen can be made to flash for one frame by providing the optional parameter FLASH.

�Misc. Actions

ANNOUNCE < sceneitem VESSEL >

Creates a capsule-space effect around the object VESSEL, as if it had just jumped into the system.

DEBUG < string STRING | variable VAR | sceneitem VESSEL >

IF the game is being run in debug mode (-Debug on the command line) DEBUG will cause the message given in STRING to be written to the screen. This can be useful in following more convoluted mission logic systems. Alternatively, if either VAR or VESSEL is supplied instead of STRING, then their names and values will be reported.

DOCK <sceneitem VESSEL1>,<sceneitem VESSEL2>,<number DOCK1>,<number DOCK2 >

Docks the objects VESSEL1 and VESSEL2 together, using the docking points indexed by DOCK1 and DOCK2 respectively.

UNDOCK <sceneitem VESSEL>

Released the object VESSEL from whatever it was docked to. This will impart some momentum to the non-dominant partner in the docking.

DESTROY <sceneitem VESSEL>,[< boolean BOOL>]

Will destroy the object VESSEL. If the optional boolean BOOL is set to OFF the ship will be destroyed silently, without any explosion visual or sound effects.

PLAYSOUND <resource SOUND>,[<number VOL>],[<number FREQ>],[<number PAN>]

Plays a sound. The optional variables VOL,FREQ and PAN can be used to override the defaults for volume, frequency and pan (left to right position) respectively.

RECSYSTEM

RECSYSTEM effects the next star system to be created or entered. It causes the creation of a 3D Studio ASC file of the planets in the system, saved to the path “r:\objects\solarsystems\<sysname>.asc”

This is not recommended if you have no r: drive with the required folders.

�Mission Commands

DEC_OBJV <resource RESOURCE>

DEC_OBJV declares that the previously loaded text resource RESOURCE is the objectives list for the current mission. The text is parsed into the individual objectives and objective numbers at this point.

SCORE_OBJV [<number OBJECTIVE_NUMBER>,<number OBJECTIVE_SCORE>]

Set of pairs of numbers used to set up the scores for the various objectives in the mission. Th objective number is the one given in the objectives text file.

TIME_OBJV �Eh?

SET_OBJV <objv_state STATE>,[<number OBJV_NUMBER>]…

Changes the state of some objectives to STATE. The objectives changed are those indicated by the list of OBJV_NUMBER variables.

SHOW_OBJV <boolean BOOL>,[<number OBJV_NUMBER>]…

Either shows or hides the objectives listed as OBJV_NUMBER variables, depending on the state of BOOL. Objectives are by default visible, but this may be used to hide objectives that the player should not be aware of at the beginning of the mission.

MAX_KILL_BONUS <number X>

Overrides the maximum kill bonus of the mission with X. The kill bonus is otherwise taken from the precedence.csv file in the psg\resource\scripts directory.

SUCCESS [<resource MESSAGE>],[<boolean BOOL>]

The mission is complete. If the string MESSAGE is supplied than that string is printed at the top of the screen.

If BOOL is supplied as ON then the mission will exit 5 seconds after the declaration of success, preventing the player from playing further.

FAILURE [<number STRING_NUMBER>]

Unless it has already been succeeded, the mission is failed.

If a STRING_NUMBER has been received then the string it indexes is displayed as an explanation.

If the mission has been succeeded, then FAILURE will just bring the mission to an end, but not fail it.

OUTCOME <number X>

Sets the outcome of the mission to the value X. Used for the branching missions, in conjunction with the precedence.csv file.

�Dialogue

Creating your own custom dialogue

To create dialogue in IWar you’ll first need to write your dialogue text. Each mission has a directory for dialogue text, located in the <install directory>\psg\resource\text\ directory.

Each mission MUST be assigned a two digit number. At the time of writing mission numbers 1-8, 11-15, 19-20, 22, 24-27, 29, 31-41, 44, 90-92, and 95-99 are used in the game. This leaves approximately 60 numbers free for custom missions.

So for mission 1 the text directory is:

<install directory>\psg\resource\text\mission01

Note that the text directory name does not have to begin with ‘mission’ – the important item is the two digit number on the end. However for consistency’s sake it’s best if you use the mission01 naming convention.

Dialogue Text file Syntax

There are two types of dialogue text file: Briefings and in-game. We’ll deal with briefings in a different section, but for now all you need to know is that briefing text files have the filename prefix ‘b’ and in-game text has the prefix ‘t’. This is normally followed by a number, e.g.

t140.txt or

b20.txt

Numbering normally starts at 10, and each successive piece of dialogue as a number incremented by ten. This is to allow you to insert extra dialogue between other dialogue if needed.

A in-game dialogue file consists of two parts; the declaration of the speakers and the declaration of the dialogue structure and sentences used.

The Declaration of Speakers

The declaration of speakers binds single letters to speakers, and should be enclosed between angle brackets, like this:

< H=Haas S=Smith >

Wherever H is given as a speaker in the dialogue section, it is expanded to Haas. Note that the player is always ‘P’ and does not have to be declared.

There needs to be a space between each declaration, and between the declarations and the brackets. The first ‘<’ must be at the very start of the line, as this character is tested by the game to see whether the dialogue is old-style or new-style.

The Dialogue section

A single line of dialogue looks like this;

D:I’m reading two Indies, sir. They don’t appear to be armed.

It’s referred to as an utterance.

The computer will expand the above example (assuming he was declared as a speaker) as Dubois saying the sentence, and pull in the audio file for it, if it exists. (See Dialogue Audio Files, below)

The dialogue structure is described by brackets (for this reason, character dialogue cannot itself include brackets - probably the most serious restriction in the game’s dialogue system.)

Within a bracket pair, Utterances are executed sequentially.

The outermost level of dialogue is executed automatically. Any further bracket sections are optional - in the sense that they won’t execute until the player selects them. It doesn’t make sense to have these further sections start with anything other than a statement by the player.

(

	H: Hi. This is an automatic section.

(

P: And this section must be selected from the

com-arm.

)

)

Consecutive sets of bracketed dialogue are presented as choices simultaneously. If anything else comes after them, the options must be exhausted before it will be executed.

(

	H: Blah

 	(P:Option one)

	(P:Option Two - both options presented simultaneously)

H: This only read after option one and two have been used.

)

Player Options

Where a player utterance is the first utterance in an optional branch of the dialogue (in other words, where it is the first utterance after an open bracket) it is possible to add some extra descriptions to the Utterance. These tell it who the player is talking to, a summary of the sentence, and can include modifiers to the branch structure.

Right after the P:, a pair of square brackets should be included, with an initial between them. This tells the computer who the comment is directed to.

For example,

P:[H]Hi Haas.

This information is needed for the Comm Arm. It is also possible to include a short summary of what the player will say, to be displayed on the Comm Arm. This goes between curly braces, after the square brackets.

P:[K]{Hi}Hi there Haas, how are you doing?

Usually, all optional branches in a dialogue must be explored before execution moves on. It is possible to change this by adding the modifiers ‘+’ and ‘-‘. These go into the square brackets, after the declaration of who is being spoken to. Don’t ask why.

P:[K+]

The plus sign means that if the option is chosen, the other options will be ignored and the dialogue will move on. This is essentially a conversation-stopping utterance.

The minus sign means that the utterance is non-essential. Providing all the ‘normal’ utterances in the selection have been done, the dialogue can move on and ignore this one.

Example ;

(

	(P:[K-]{Wibble}Wibble)

	(P:[K]{Sunday?}Is it Sunday?

		K:No.)

	(P:[K]{Monday?}Is it Monday?

		K:Could be. Ask Dubois.)

	(P:[K+]{Goodbye})

)

In this instance, saying goodbye will finish the dialogue, because of the ‘+’. If that utterance was not in there, the player would have to ask both questions about which day of the week it is. Because of it’s ‘-‘, the Wibble does not have to be said. It is essentially throw-away dialogue.

Say-To

The player initiated a Say-to. It is essentially a dialogue with a single option. It looks like this;

< S=Smith >

(

	(

	P:[S]{Engines?}What...

)

)

Where the second set of brackets is needed to indicate it is an option, as the outermost pair are opened automatically.

Returning Variables

Where the outcome of a dialogue section is significant, a variable can be returned to the script by the use of an equals sign. This counts as an utterance.

For example:

(P:[H+]{Tolliman}Take us to the Tolliman point. Enagage.

 =1)

Final Warnings:

Don’t use the symbols (,),[,],{,},*,|,=,& or : within the dialogue. It’ll cause big problems for the parser.

Dialogue Audio Files

Dialogue audio files are normally loaded off the CD from the appropriate Audio directory (Audio for English, AudioFrench for French, and AudioGerman for German.)

When you create your own unique dialogue for a mission you need to put it on the hard disk. There’s a specific directory for this:

<install directory>\psg\resource\audio_L

(Or audio_LFrench or audio_LGerman)

Dialogue audio is recorded as a Windows WAV file in Mono 8bit PCM format, at 11,025 Hz. This codec and sample rate is perfectly adequate for voices.

The filename of the Audio is derived from the REGLOAD command used to register the dialogue in the script. (The REGLOAD_L command is used to register custom dialogue held locally on the hard disk, and it is this command you would use for your own dialogue, unless you wished to re-use dialogue already used in the game)

The command for registering a dialogue resource takes the form:

REGLOAD_L 	<resource RESOURCE>, “<DIALOGUE TEXT PATH >”, TXT2TXT

Note that the pathname must be in quotes. An example command might be:

REGLOAD	T10, “PSG\RESOURCE\TEXT\MISSION01\T10.TXT”, TXT2TXT

Dialogue must be registered at the beginning of the script, along with all of the other regloads for models, etc.

The filename of the audio file associated with the text is a composite of the mission number taken from the directory name in the REGLOAD command, the text file number, and the position of the audio file’s associated utterance in the dialogue text file, each separated by an underscore.

So the first piece of dialogue in a mission 1, might be loaded with the following regload command:

	REGLOAD_L	T10, “PSG\RESOURCE\TEXT\MISSION01\T10.TXT”,TXT2TXT

The filename of the audio file would be:

	m01_t10_0.WAV

Where m01 represents mission01, t10 represents the t10.txt dialogue text file, and _0 represents the first utterance in that text file.

For multiple utterances the last parameter would increment according to the order of the utterance in the dialogue text file, e.g.:

m01_t10_0.wav

m01_t10_1.wav

m01_t10_2.wav

Each piece of dialogue registered is assigned a symbol. The symbol is used by the DIALOGUE commands in the script. The convention is to use the text file name as the symbol, e.g. t10.txt would use the symbol t10.

Dialogue Script commands

DIALOGUE <resource RESOURCE>,[<sceneitem SPEAKER>]

Starts the dialogue sequence given in RESOURCE. If the optional variable SPEAKER is included, then the dialogue is assumed to come from the ship SPEAKER. The dialogue will abort if the ship is destroyed, and a picture of the ship will be included on the com-arm or in the window-in-a-window whenever it is talking.

MONOLOGUE <resource RESOURCE>,[<sceneitem SPEAKER>]

Included for historical reasons, MONOLOGUE is exactly the same as DIALOGUE.

PROMPT <boolean BOOL>,[<number STRING_NUMBER>,[<number OPERATION_NUMBER>]]

If BOOL is OFF then no further arguments can be supplied, and the current prompt is turned off.

If BOOL is ON then the string indexed by STRING_NUMBER is used as the prompt. If PROMPT needs to refer to the key for doing something, then the key can be retrieved by the OPERATION_NUMBER (the key may be different in different localities, so this needs to be dynamic.)

�AI Quick Overview

I-War Artificial intelligence is a three-tier system. The highest level of AI is the set of orders and order-evaluators given to a ship. This level of AI determines which of its orders the ship will attempt to complete at any given time. Think of this as the goal-control level, that deals with the ships goals without knowing the details of how they are implemented.

The middle level AI is the order instantiation level. The orders are translated into sets of small objectives known as hyperstates. There are around 60 of these objectives, all fully customisable. They are stored as a stack, and can make use of one another. Most of these objectives represent specific manoeuvres, such as docking or attacking in a certain way. Although this level of AI understands physical space it is not concerned with the actual control of the ship. Instead, it passes target positions, orientations and velocities to the lowest level of AI which will use the crafts physical capabilities to attempt to achieve these targets. You can think of the bottom level AI as the instinctive part - dealing as it does with motion and collision avoidance.

Obviously damage will effect the ability of a ship to do what it plans to do, but what is less obvious is the things that can effect the speed of the AI process itself. There are two of these - the SKILL level of the pilot (High skill pilot can make more decisions per second) and any crew damage. If a vessel has taken crew damage it means that the enlisted officers have died and the grunts have taken over. This cripples the crafts’ ‘thinking’ ability.

As a script writer, you will be almost entirely concerned with the top level of the AI. You can give ships orders directly but it is not possible to control the lower levels of AI from within the script language. Imagine that you are the commander of these ships - you can tell them what do to, but you can not dictate their thought processes as they do it.

Orders

You will control the ships by giving them orders and order parameters. At time of writing there are 60 orders, although the flexibility of some of them means that you will use a subset of ten or so more than the others.

A ship can be given multiple orders. A ship with more than one order can only obey one at a time, so it needs a conflict resolution system to decide which one to use. We call this the order evaluator. Each order has an evaluator that is used to determine, under the current circumstances, which order is most urgent. The most urgent order is then the one carried out. (Note that there is a slight bias in favour of the current Order to prevent a craft from see-sawing between two orders with very similar urgency values.)

As the writer, you need to know how the order-evaluators work so that you can predict which of several orders a ship will be following at any one time. For that reason the order evaluators are listed as separate entities to the orders that they are attached to.

An Overview of Syntax

ORDER <number ORDERNUM>,< number PRIOR_ORDER >,< sceneitem VESSEL >,<string ORDERNAME>,< number UNUSED1>,< number UNUSED2>,< number MULTIPLIER>,< symbol PARAM1>,<symbol PARAM2>

Sets up an order for the starship VESSEL. ORDERNUM gives the number of the order to be set - ships have 10 order slots, numbered 0-9. Slot 0 should not be used, as this contains the ships default self-preservation order and the craft may act unnaturally if it is removed.

If the PRIOR_ORDER variable is set then the order that it indexes must be completed before the new order being set up will be considered.

ORDERNAME is a string saying what the order is to do. For more details, see the Orders appendix.

The two unused variables, UNUSED1 and UNUSED2, should be set to 0.

Every order has an evaluator associated with it that is used to decide which order to follow at any given time. The evaluator uses the parameters PARAM1 and PARAM2 to come up with an urgency number between 1 and 100, which is then multiplied by the MULTIPLIER. If the result brings it out ahead of the current active order by 10 percent or more, the ship will switch tasks.

ORDER_PARAMS <number ORDER_INDEX>,< sceneitem VESSEL>,< symbol ALPHA>,< symbol BETA>, < symbol GAMMA>

Some orders require one or more parameters to be carried out successfully, and can’t make-do with the defaults set up by ORDER. ORDER_PARAMS allows you to set these. The effect of the parameters ALPHA,BETA and GAMMA vary from order to order, so check in the orders appendix.

PLAYER_ORDER < string ORDERNAME >,< boolean LDS >

Sets the player autopilot to the order given in ORDERNAME. If the boolean LDS is true, the player will switch into LDS mode, otherwise he will switch out of it.

ASSERT_ORDER <number ORDER_INDEX>,< sceneitem VESSEL>

Makes the order indexed by ORDER_INDEX into the current order for VESSEL. However, this won’t effect its evaluator function and it may still switch back to another order very quickly.

CANCEL_ORDER <number ORDER_INDEX>,< sceneitem VESSEL>

Cancels the order ORDER_INDEX of the ship VESSEL. In some situations it is advantages to cancel the self-preservation order in slot 0, in order to make a vessel extra-reckless.

Common Orders:

WaitForFurtherOrders	

EVAL: Fixed Return

PARAMS: Null, Null, Null

The ship does nothing. If the craft is in LDS it will cruise at its current speed, otherwise it will use its translational thrusters to try and zero its velocity. WaitForFurther orders does not exit, and uses the evaluator function FixedReturn

SelfPreservation

EVAL: DamageReturnSwitch

PARAMS: Null, Null, Null

Self preservation is the default order of slot 0, and so rarely has to be set by the user. Once activated, this state will cause the vessel to return fire on an attacker and to retreat if outnumbered or badly damaged. A ship operating this order will use the full range of standard attack and defence types as it deems fit. Self Preservation uses the evaluator function DamageReturnSwitch.

SentryDuty

EVAL: SentryDuty

PARAMS: Null, Null, Null

A craft on sentry duty will do nothing, attempting to remain at its post using its translational thrusters. As it uses the SentryDuty evaluator, this order will only be active as long as there are no enemy nearby. It is best used in conjunction with a slightly lower-priority combat order.

		

RunAway

EVAL: FixedReturn

PARAMS: < Navigation Target override >, Null, Null

The ship will try to run away from its current target. It will prefer to use LDS, but will use thrusters where LDS is inhibited or otherwise unavailable. The craft will not keep going for ever, but will reach a distance that it considers safe and then wait. (After all, it may want to regroup and come back for another crack.)

NavyGunPlatform

EVAL: FixedReturn

PARAMS: < Sense of things to attack >,< Sense of things not to attack >, Null

DEFAULT PARAMS: SN_STARSHIP, SN_COMMONWEALTH|SN_ALIEN|SN_NEUTRAL, 0

A ship running a gun platform order will remain in the same place and fire at any foe that get within range. This is only suited to immobile or near-immobile vessels with substantial fire arcs, such as gunstars and cruisers playing a support role. The same underlying AI can be selected by the generic combat AI when suitable, so ships running FixedAttack orders may be observed to behave this way. The order parameters given dictate what sense flags the targets must exhibit to be fired upon. NavyGunPlatform and the other _Platform orders have suitable default parameters for their allegiance so you don’t have to worry about them.

IndieGunPlatform

EVAL: FixedReturn

PARAMS: < Sense of things to attack >,< Sense of things not to attack >, Null

DEFAULT PARAMS: SN_BLACKSHIPS|SN_COMMONWEALTH, 0, 0

The same as NavyGunPlatform but with a different set of default order parameters.

AntiAlliedPlatform

EVAL: FixedReturn

PARAMS: < Sense of things to attack >,< Sense of things not to attack >, Null

DEFAULT PARAMS: SN_ALLIANCE, 0, 0

The same as NavyGunPlatform but with a different set of default order parameters.

BlackGunPlatform

EVAL: FixedReturn

PARAMS: < Sense of things to attack >,< Sense of things not to attack >, Null

DEFAULT PARAMS: SN_STARSHIP, SN_BLACKSHIPS|SN_NEUTRAL, 0

The same as NavyGunPlatform but with a different set of default order parameters.

GunPlatform

EVAL: FixedReturn

PARAMS: < Sense of things to attack >,< Sense of things not to attack >, Null

DEFAULTS: SN_STARSHIP,0, 0

A Generic gun platform order. As set up, this order will fire on any starship but you can override the parameters to tailor the order to your tastes.

DefendObject

EVAL: BooleanDefender

PARAMS: Null, Null, Null

Combat order designed specifically to attack anything which attacks the object being defended. If the defended object is not under attack, the order will do nothing until it is.

WaitForTrouble

EVAL: NoThreat

PARAMS: < Target Range >,< Navtarget Override >,< LDS Toggle>

PARAMS: 15000, 0, 0

Essentially an escort state. The craft will follow its navigation target at a reasonable distance for as long as it does not feel threatened. (i.e. is not attacked or approached too closely by an enemy craft.) This can be used to provide a fairly graceful honour guard if combined with an attacking order.

Escort

EVAL: FixedReturn

PARAMS: < Target Range >,< Navtarget Override >,< LDS Toggle>

DEFAULTS: 70000, 0, 0

The craft will escort its navigation target, maintaining a distance that is between ALPHA and two times ALPHA from its target. The ship will use LDS if necessary, unless GAMMA is set to 1, which will inhibit the crafts ability to switch from one mode to the other.

Approach

EVAL: FixedReturn

PARAMS: < Target Range >,< Navtarget Override >,< LDS Toggle>

DEFAULTS: 70000, 0, 0

The craft will approach its navigation target, attempting to get within the range given as its ALPHA parameter.

Lagrange

EVAL: FixedReturn

PARAMS: [Lagrange point scene item],< Target system number>, Null

DEFAULTS: Null, 1, 0

This order is given to a ship to cause it to fly to a LaGrange point and leave the system. If the optional LaGrange scene item is not supplied, the craft will fly to its nav target, assuming that that is a LaGrange point.

MatchVel

EVAL: FixedReturn

PARAMS: Null, [Navtarget override], Null

Match velocity with target craft.

StayNear

EVAL: VesselTooFar

PARAMS: < Target Range >,< Navtarget Override >,< LDS Toggle>

DEFAULTS: 70000, 0, 0

Escort target craft if it has become too far away from us.

UnDock

EVAL: FixedReturn

PARAMS: Null, Null, Null

Undock. This is much more usually achieved through the UNDOCK command in the script language.

GoAndDock

EVAL: FixedReturn

PARAMS: [Navtarget override], Null, Null

Tells a craft to go and dock with its navigation target. If it cannot dock at a given time, it will loop around its target until a docking point becomes available. (The player is the only exception to this rule. If the player engages the dock autopilot but cannot dock, the autopilot will simply abort.)

DockWhenClose

EVAL: VesselTooClose

PARAMS: [Navtarget override], Null, Null

Uses the same docking AI as GoAndDock but only activates when the target craft is nearby.

DockAndDemolish

EVAL: FixedReturn

PARAMS: [Navtarget override], Null, Null

Similar to GoAndDock, this docks the craft onto its navigation target. However, once it has done this it undocks again and sets a timer on the other ship that will detonate it after a fixed period.

LDSToNavTarget

EVAL: FixedReturn

PARAMS: Null, Null, < LDS Toggle >

Puts craft into LDS state and sends it off. The order will abort when LDS is no longer needed or unavailable. Note that as Approach will automatically use LDS if it needs to, LDSToNavTarget is used infrequently.

StopAbsolute

StopRelative

StopDead

BigBomb

DroneTargetRun

Causes craft to run in a straight line at a fixed speed.

DroneMovingTarget

Craft continually accelerates towards its target.

DroneChasingTarget

FixedAttack

EVAL: FixedReturn

PARAMS: [Target Override], Null, Null

Fixed Attack is a good general purpose combat order. It makes use of the internal AI combat strategy selection devices, so that the ship will choose the most suitable course of action in the circumstances. This lifts the burden from the script writer. Fixed attack can be used to force an attack on a specific individual by specifying a scene item as the Alpha value, but if this is neglected the craft will happily select its own targets or adopt those of its leader (if it has one.)

AmbushAttack

EVAL: VesselTooClose

PARAMS: [Target Override], Null, Null

This state makes use of the same combat AI that Fixed Attack does but has the major difference of being range-limited. The evaluator of the AmbushAttack order is based on the distance to the target object, only allowing an attack at close quarters (assuming that there is a competing order such as SentryDuty in force as well.)

ProvokedAttack

EVAL: DamageReturnUncool

PARAMS: [Target Override], Null, Null

The provoked attack order will only activate once the craft is damaged. This is really pretty similar to the self preservation order but is more customisable by the user.

Follower

FollowPlayer

SeekerMissile

EVAL: FixedReturn

PARAMS: Null, Null, Null

The ship behaves as if it were a missile, making use of the seeker missile AI routines. Useful for kamikaze attacks.

ForcedTailBiting

EVAL: FixedReturn

PARAMS: [Target Override], Null, Null

A ship with this order will attack by trying continually to get around behind an enemy vessel to fire through the weak point in its shields. Note that this tactic can be employed by the general purpose combat orders such as FixedAttack - usually when a smaller vessel is attacking a larger one.

BusDriver

EVAL: FixedReturn

PARAMS: < First Waypoint >, [Number to start at],< target range. >

The Bus Driver order causes a ship to move in a circuit around a sequence of waypoints. The waypoints must have identical symbol names with a number appended after them. (e.g. waypoint 0, waypoint 1 and so forth). It does not matter what names they are actually given, only what symbol names they have.

BusDriverNotStopping

EVAL: FixedReturn

PARAMS: < First Waypoint >, [Number to start at],< target range. >

This order is very similar to BusDriver, except that the ship will not slow down when it reaches its target waypoints and will instead move on to the next one immediately.

DefendMothership

EVAL: Param1Alive

PARAMS:

ConstantFire

Loiter

SafeLoiter

StraightLDS

Drift

�Order Evaluators

VesselTooClose STARSHIP, RANGE

Measures the distance from the orderee to the STARSHIP. If the distance is greater than RANGE, the function evaluates to zero. Otherwise it will rise to 100 as the STARSHIP gets closer to the orderee.

If STARSHIP ceases to exist, the order evaluator will delete the order associated with it. It is important to remember this side-effect.

TargetTooClose [NULL], RANGE

Measures the distance between the orderee and the orderee’s current weapon target, and returns a value based on the RANGE. If the distance is greater than RANGE, the value will be zero.

VesselTooFar STARSHIP, RANGE

Measures the distance from the orderee to the STARSHIP. If the distance is greater than RANGE, the function evaluates to zero. Otherwise it will rise to 100 as the STARSHIP gets closer to the orderee.

If STARSHIP ceases to exist, the order evaluator will delete the order associated with it. It is important to remember this side-effect.

TargetTooFar NULL, RANGE

Measures the distance between the orderee and the orderee’s current weapon target, and returns a value based on the RANGE. If the distance is greater than RANGE, the value will be zero.

DamageReturnSwitch INTEGRITY,[STARSHIP]

Returns 100 if the remaining hull strength is less than the value given as INTEGRITY. If STARSHIP is given, then the check is made on that ship, otherwise the check is made on the orderee.

FixedReturn VALUE, NULL

Returns VALUE.

DamageReturnCool INTEGRITY,[STARSHIP]

Returns 100 if the remaining hull percentage is greater than the value INTEGRITY.

Otherwise returns a varying value that drops to zero as the integrity drops to zero (equivalent to the damage rising to 100). As with DamageReturnSwitch, STARSHIP is an optional parameter that switches the object of the test between the orderee and STARSHIP.

DamageReturnUncool INTEGRITY,[STARSHIP]

Returns 100 if the remaining hull percentage is less than that given. Otherwise the return value drops to zero as the percentage rises to 100. As with DamageReturnSwitch, STARSHIP is an optional parameter that switches the object of the test between the orderee and STARSHIP. The main difference between DamageReturnUncool and DamageReturnSwitch is the variable nature of DamageReturnUncool’s result and the boolean nature of the other’s.

LookFor WANTED,UNWANTED

Trys to find a scene item with a set of sense flags that match those passed to it. If a suitable sceneitem is found and is within 50ks, then the corresponding orders’ first value (ALPHA) is set to that of the sceneitem and a value based on the distance (higher if closer) is returned.

BooleanDefender ESCORTEE, DAMAGE

This becomes true if the escorted vessel, ESCORTEE sustains damage exceeding DAMAGE. This is useful for ships that are in general combat, but need to be recalled if a specific important ship comes under attack.

SentryDuty RANGE, NULL

Returns 100 is an enemy ship is spotted within RANGE of the orderee.

WepTargetMatched TARGET, NULL

Returns 100 is the orderees weapon target matches TARGET.

NoThreat SENSORPROFILE, LIMIT

Returns 0 if the number of ships matching SENSORPROFILE is below LIMIT. The return value increases as the number of ships over limit increases. This is further boosted if the orderee is damaged, so that damaged ships will consider things more threatening than undamaged ships.

�Debugging

During development of your script you’re bound to encounter bugs and other problems.

The script language is not very robust, as it was originally designed for internal use only. Small errors in syntax or in symbol and label names can cause it to fall over and crash.

Often your script won’t do what you intended it to do, and unless you have an idea where in the script it’s going wrong you won’t be able to fix the problems.

This is where the built-in debugging functions come in. By using the DEBUG command and the game’s debugging functions in the cheat mode you can see what is going on in your script, and where it may be going wrong.

In order to activate debugging functions the option –debug must be added to the game’s shortcut target line. It’s also recommended you run the game in windowed mode while debugging and testing (Add –w to the target line) – it will allow you to shut the game down properly if it crashes or hangs without (hopefully) having to reset your PC.

The Cheat Mode

The cheat mode isn’t just a way to cheat – it also includes very useful debugging functions. There are two ways to activate the cheat mode.

Enter –powers on the game’s shortcut target line, when running a script directly via the shortcut. (Recommended)

Type darkgoat when the game’s mission history screen is shown.

Be careful with the cheat mode functions, as they can make the game unstable, or ‘break’ the mission scripts if used improperly.

When the cheat mode is active the following special keys are activated:

History Screen keys

�PRIVATE��Left-Shift Backspace�Add mission��Left-Shift =�Toggle outcome of selected mission��Left-Shift 0 (zero on top row)�Add all missions (Make all missions accessible)��	

In-Game Keys

�PRIVATE��Left-Shift P�Save Screenshot

Dumps a PCX image file (Software mode) or TGA image file (3Dfx mode) to PSG\RESOURCE\ART\SCREENS. (Or to the directory specified by the command SAVESCREENDIR in the Dreadnaught.ini file)

Note: Use the –nozlock command line option if you find the screenshots are corrupted in 3Dfx mode.��Left-Shift M�Save Movie

Dump a continuous stream of screenshots in PCX format for Software mode, TGA for 3Dfx. Useful for making movies of the gameplay.

Warning: Use with care as it can fill up your hard disk very quickly!��Left-Shift 8�Jump to vicinity of target

Useful if you want to travel huge distances quickly��Left-Shift 9�Match velocity with target��Left-Shift 0

(Zero)�Explode targeted ship

Useful for clearing out enemies quickly when testing��Left-Shift a�Accelerated time

Allows you to speed up the game action. Each press doubles the game speed up to 16x. A press after 16x returns the game to normal.

Warning: Using Accelerated time can cause problems with the game’s AI, and can cause ships to crash while docking, etc.��Left-Shift I�Make player invulnerable (Toggle on/off)

One of the most useful functions!��Left-Shift w�Force mission win��Left-Shift g�Show all contacts

Shows all reachable planets and moons as waypoints, plus all ships including those out of sensor range. ��Left-Shift j�Capsule Jump

Jumps instantly to current LaGrange point destination (if set) - Saves all that tedious mucking around with capsule space.��Left-Shift k�Cheat Dock – Docks instantly to target

Warning: Use with care – object to be docked with can sometimes be moved out of it’s normal position when doing this.��

Debugging Keys

Left-Shift 6�Toggle Timing Profiler – shows the amount of processor time the various game functions are taking up. If any of the indicators go red, then that function is taking up too much processor time. Useful for finding out if the game is running fast enough, and which sections are slowing the game down.��Left-Shift 7�Show Script debug info - Each press selects the next set of debug info. First press shows the game frame rate is shown in the top right of the screen. Also shows the current conditional or wait being evaluated – you can see if the script is waiting for a particular situation to happen.

Press again to view the current target’s status – shows exactly what you’ve targeted is doing, what orders it is following, damage, velocity, etc. This is useful when a ship appears not to be doing what you tell it to.��Left-Shift s�Skip current wait or conditional – ignores current conditional and goes on to the next command. Useful for skipping waits and going straight to the action.

Warning: Use with care – skipping too much can cause the script to malfunction.��Left-Shift ;�Toggle AI on/off – essentially freezes all the action, but you can still fly around. Good for getting screenshots, and finding out what all the ships are doing at a given moment.��

The Debug Command

To give you a better idea as to what’s going on you can use the DEBUG command to output debug information to the screen. The debug command’s format is as follows:

DEBUG < string STRING | variable VAR | sceneitem VESSEL >

IF the game is being run in debug mode (-Debug on the command line) DEBUG will cause the message given in STRING to be written to the screen. This can be useful in following more convoluted mission logic systems. Alternatively, if either VAR or VESSEL is supplied instead of STRING, then their names and values will be reported.

�Simple Tutorial

To ease you into script programming we’ve written a brief tutorial. It doesn’t aim to teach you everything, but it’ll show you how to create and position ships, and give them simple orders.

If you want to write more complex scripts you’ll have to study the game’s prewritten mission scripts and this programming document to see how it’s done.

The tutorial relies on the Mission Template script that was supplied with this document.

Setting up

Copy the MissionTemplate.scr file to another directory, and rename it to Tutorial.scr. For the purposes of the tutorial we’ll assume the file is copied to your c:\, so the path to the file is c:\tutorial.scr

Note: If you want to add dialogue that uses audio to the script you will have to give the script a two digit number in the filename, e.g. Tutorial50.scr. It’s best to leave dialogue until you’re more proficient with mission programming.

Before you can start programming you must extract all the scripts in the game using the deslabber executable supplied with this document. (See Deslabbing, in the first chapter) You then need to create a custom shortcut to the IWar executable.

Go to the directory where you installed the game.

Create a shortcut to the IWar.exe. (Or game.exe if you’ve installed the European 3Dfx upgrade)

Right click on the shortcut and select properties add these commands to the END of the target line, after any quotation marks:�-w –debug –nologos –noslab –powers c:\tutorial.scr

The –w command runs the game in software mode in a window on your desktop – essential for debugging.

The –debug command ensures that all debug messages and errors are shown.

The –nologos prevents loading of the logo movies when loading the game.

The –noslab command tells the game to use the uncompressed script files, instead of the compressed versions.

The –powers command enables the debug and cheat mode features in the game for this script.

The pathname at the end of the line is the path of the script file to be loaded. Change this to point to the Tutorial script. The game will start the mission without going into the menu screens you normally see on loading the game.

Once the shortcut is created try running the game by double clicking the Shortcut Icon. Note that you shouldn’t need a game CD in the drive unless you use audio or video from any of the existing missions.

The game should run in a window on your desktop, and you should find yourself just in front of the L4 lagrange point, looking towards Earth. Behind you should be the G-Kon station.

If it doesn’t work or you’re asked for a game CD then make sure that the path to the script is correct, and that the options you added to the target line are right.

Congratulations you’re ready to start programming a simple mission!

Editing the Script

You’ll need a good plain text editor to edit the script. Windows notepad is adequate, but you should really use a more advanced editor that shows you the current line number and has good search and replace capabilities. There are many shareware editors that are ideal for the purpose.

The reason for needing a current line number display is that Script Error messages often give an approximate line number for the error. The line number is shown in brackets after the script filename.

Once you have your editor you can configure it to load script files when you double click on them if you use the procedure described in Editing Scripts in the first section of this document.

Lesson 1: Changing the start point

The template script starts you off in the Sol system, right by lagrange point L4, and looking at Earth. This is an interesting system to fly around, but really we’d like to go somewhere exotic.

Find the line with the command SYSTEM. You’ll see that it’s got two parameters. The first is the star system. You can refer to the star systems by name or number (Though number is preferred to avoid language localisation issues). The second is the Lagrange point designation. Most systems two main stable lagrange points, L4 and L5. These are the ones used normally in the game. There are other lagrange points, but these are referred to by name, e.g. Jupiter L4 and must be ‘found’ before you can use them, using the FIND_PLANET command.

First change the solar system to Wolf 359. Conveniently we’ve provided a table of Solar System names and numbers – it’s Appendix A – so you’ll see that the number for the solar system Wolf 359 is 6.

Edit the SYSTEM line in the script to read:

SYSTEM “6”,”L4”

Also edit the LOCATION command underneath it. (This tells the GSV view which system and location to look at)

LOCATION “6”,1,”L4”

Save the file out and click on the shortcut. You should find that instead of Earth you’re now in Wolf 359 space!

Lesson 2: Adding another ship

Now we’re going to add another ship – an Indie tug, puffin class.

This requires several pieces of information inserted into the right parts of the script.

Declare the Scene Item

First we need to declare it as a scene item. The scene item name is the name you’ll use to refer to the ship when you want to do anything with it.

In the declarations section of the script, under the SCENEITEM Dreadnt command add the following line:

SCENEITEM	IndieTug

Declare the Model name

Then we need to declare its model symbol name. Under the MODEL DreadMd command add:

MODEL		IndieTugMd

The model symbol name refers to the 3D model used. By convention 3D models have the Md suffix.

Load the model

Now that we’ve told the game our ship’s ‘name’ and what its model name is we can tell the game to load its model. The Indie tug uses a shape file called PuffinI_rto.lwo

The extension .lwo signifies that it’s a lightwave object. Lightwave was the 3D design and rendering package used to create the ships.

Add this line to the RESOURCES area of the script, under the 3D models section, right under the REGLOAD command for the Dreadnaught.

REGLOAD IndieTugMd,"\psg\resource\shapes\PuffinI_rto.lwo",LWO2BRM

Create the Ship

We now have all the pieces in place, so all we have to do is to create it.

The CREATESHIP command is used to create the ships in the. It requires several pieces of information:

The sceneitem to be created – in this case IndieTug

The model symbol name - IndieTugMd

The name of the ship as it appears on the contacts list, in double quotes – We’ll call our ship “Cannon Fodder”

The type of vessel – TUG (Taken from the Ship Type table in the Symbols section)

The vessel’s allegiance – INDIE

The X, Y and Z coordinates where the ship is to be placed, in centimetres(!) To stop the ship being created in the same place as the Dreadnaught we’ll move it off in the Z direction by 1km, so the coordinates will be 0,0,100000

Optionally the Yaw, Pitch and Roll of the ship. – 0,0,0 in this case.

So if we put them all together we get a line like this:

CREATE_SHIP IndieTug,IndieTugMd,"Cannon Fodder",TUG,INDIE,0,0,10000,0,0,0

Place this line immediately after the BRIEFING command in the script, in the section labelled MISSION CODE. You also need to tell the script what the capabilities of the ship are, e.g. engines, weapons, etc. Fortunately there’s an easy way to do this. Each ship has a pre-defined ship file, which contains details of all the capabilities of the ship. All you need to do is use the #INCLUDE command to include the relevant ship file for the tug.

Immediately under the CREATE_SHIP file add the following line. Note it MUST go at the beginning of the line to work. Also note that the case is very important – if you get the case wrong then the include will not work, but no error will be shown.

#INCLUDE puffin.shp

Now try running the script. You should see a puffin tug in front of you. It will appear as a RED (Indie) contact in your contacts list and will be called “Cannon Fodder” It hasn’t got an indie paint scheme, but we’ll leave that until later.

If you approach it, you will find that it will move out of your way. You can shoot it if you want to.

Not very exciting is it? It doesn’t shoot back or anything. That’s because it has no orders. It doesn’t know what to do yet. In the next section we’ll give the tug some simple orders.

Lesson 3: Giving the tug some orders

If you don’t give the tug any orders it won’t do anything except avoid colliding with you. The orders system is incredibly flexible, and quite complex so in this tutorial we’ll use one basic order to get the tug to attack us. See the AI section for more information and to make your head explode.

The Order command is quite complex and requires several different parameters:

Order Number - Each order you give a ship is numbered. The lower the order number the higher the priority. Each ship runs an order number 0, which handles its self-preservation orders, so the first order number you can use is 1. In our mission we’ll use order no. 1

Prior order number – If there’s more than one order then you can set this to prevent your order being carried out until the order referenced by this number is completed. There’s no prior order for our tug so the value is 0.

The Sceneitem the order refers to – in this case IndieTug

The ordername This is a string, so must be enclosed in double quotes. We’re using one of the most frequently used orders in the game: FixedAttack. In this mode the ship will attack the nearest hostile ship – that means you!

Two unused variables are also required – these are set to 0.

These are followed by the order multiplier and two parameters for the multiplier. This is evaluated to decide how urgent the order is. To save hassle we’ll set the multiplier and parameters to the normal default values for fixed attack, which are: 40,70,0

When we put all of these pieces of information together we get a line like this:

ORDER 1,0,IndieTug,”FixedAttack”,0,0,40,70,0

Add this line just under the #INCLUDE. When you run the game, the tug should immediately start firing on you.

Lesson 4: Checking for a mission win

Let’s add in a test to see when the tug is destroyed, so that this simple mission can be finished. There are several ways to do this, but the easiest is to use the DESTROYED command combined with the WAIT_UNTIL command.

Enter the following line underneath the ORDER command:

WAIT_UNTIL,	DESTROYED,IndieTug

You see that the WAIT_UNTIL command takes the DESTROYED command as an argument. You can add complex conditions, including logical operators such as AND,OR,NOT to the WAIT_UNTIL, but we’re keeping it simple for the moment.

The DESTROYED command requires a Sceneitem, in this case our tug, called IndieTug.

Then we need to tell the mission that it’s a success. Add the command SUCCESS immediately underneath the WAIT UNTIL line.

When you run the mission the tug should attack you. When you destroy the tug the MISSION SUCCESSFUL message should appear, then the debriefing screen.

Things to try

Now that you’ve programmed a simple mission you could try to modify or expand it to learn how the mission script language works. Here are a few ideas to get you going:

Change the start point to a different system

Add more Indie ships. If you do this you’ll need to change the WAIT_UNTIL conditional to check when all the indie ships have been destroyed. There are several ways to do this.

Add some more complex orders to the indie ship(s)

Add some wingmen.

�Appendix A – Solar System Table

Note: These are the systems reachable via lagrange points. The system number is the number used by the script command SYSTEM.

Number�Name�Notes:��1�Sol�Earth’s solar system��2�Epsilon Eridani���3�Proxima Centauri���4�Alpha Centauri�As used in Salvage and the intro movie��5�Barnards Star�Used in the Neutronium Galore mission.��6�Wolf 359���7�LSC 105 / Metallake�Used in the Metallake mission.��8�Delta Pavonis���9�Ross 128���10�Omicron Eridani / Omicron Eridani���11�ADS A / Venturi�Used in the Venturi mission��12�Sigma Draconis���13�Xi Bootis�Used in New Frontier��14�Beta Hydrus���15�Waypoint A / Megiddo A�The final battle with King’s vessel��16�FK 2978 / Gulatos���17�Zeta Tucana���18�Epsilon Indi���19�NDS A���20�Ceti A / Midway�Used in the Siege��21�AC���22�Tau Ceti���23�AC-24 / Momar���24�Sirius���25�LSC 113 / Inchidies���26�Zeta 2 Reticuli�Realm of the Chaos ships!��

Independence War / I-War Mission Script Programming Reference Guide

Copyright © 1998 Particle Systems Ltd.

	Page � PAGE �3� of � NUMPAGES �56�

� FILENAME \p * MERGEFORMAT �X:\Deslabber Release\Files\IWar_Script_Reference.doc�

Version No. � REVNUM * MERGEFORMAT �1� Last saved: � SAVEDATE \@ "d-MMM-yy" * MERGEFORMAT �27-Oct-98�

